快速入门使用tikz绘制深度学习网络图

时间:2022-07-25
本文章向大家介绍快速入门使用tikz绘制深度学习网络图,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

【GiantPandaCV导语】本文主要介绍最最最基础的tikz命令和一些绘制CNN时需要的基础的LaTeX知识,希望能在尽可能短的时间内学会并实现使用tikz这个LaTeX工具包来绘制卷积神经网络示意图。

https://github.com/HarisIqbal88/PlotNeuralNet

之前看到tikz可以画出这种图,感觉特别专业,所以萌发出了解一下tikz的想法。

1. overleaf平台

在电脑上安装过LaTeX都知道,LaTeX安装包巨大,并且安装速度缓慢,下载和安装的时间需要几乎一下午才能完成。庆幸的是有一个平台可以在线编译文档,那就是overleaf,如今overleaf也推出了中文版本网站:https://cn.overleaf.com/ 以下代码全部是在overleaf平台上编写运行得到的。

主页面

进入其中一个项目

最左侧是项目文件列表,中间是代码编辑区,右侧是可视化区,十分方便,只要网络通常,就可以方便地得到结果。并且这个平台提供了好多模板,可以直接使用,太太太太太棒啦。

2. 快速入门tikz

快速熟悉还是要推荐《minimaltikz》这本电子书,可以直接访问http://cremeronline.com/LaTeX/minimaltikz.pdf获取或者在后台回复latex获取。

电子书封面

这本书一共24页,算是尽量压缩了内容了,在这一节中将分析一下其中给的几个例子,用于快速入门:

所有tikz绘制图像的代码都应该在tikzpicture这个环境中使用。

begin{tikzpicture}
...
end{tikzpicture}

直角坐标系下:($

,

$)的形式代表二维坐标系中的一个点,单位是cm。

极坐标系下:(:theta代表极角,单位是度。

coordinate可以对某个点进行重命名如:

coordinate (s) at (0,1);

2.1 直线

那最基础的画几条线的实现是通过draw完成:

    begin{tikzpicture}
    draw[help lines] (0,0) grid(3,3);
    coordinate (a) at (0,1);
    coordinate (b) at (3,3);
    coordinate (c) at (2,0);
    draw (a) -- (b) -- (c) --cycle;
    end{tikzpicture}

--符号代表两点之间的连线,可以连续链接多段。cycle代表让路径回到起点,生成闭合路径。

结果展示

draw还可以添加选项,比如让线变粗、变红、箭头等需求,都很简单。

begin{tikzpicture}[scale=1]
draw[help lines] (0,0) grid(5,5);
draw (0,0) -- (1,2)--(3,0) --(5,5);
draw [->] (0,0) -- (2,1);
draw [<-] (2,3) -- (5,0);
draw [|->] (0.5,3) -- (0,4);
draw [<->] (0,6) -- (0,0) -- (6,0);
end{tikzpicture}

不同的箭头

begin{tikzpicture}
draw[help lines] (0,0) grid(5,5);
draw[thick] (0.5, 0.5) -- (3,3);
% [ultra thick, thick, thin, very thick]
draw[line width=0.2cm] (1,0) -- (3,2);
end{tikzpicture}

粗细控制

begin{tikzpicture}
draw[help lines] (0,0) grid(5,5);
draw[ultra thick, dotted] (0,0) -- (2,3);
draw[line width=0.2cm, dotted,red] (2,2) -- (4,0);
%[red, blue, green, cyan, magenta, yellow, black, gray, darkgray, lightgray, browbn, lime, olive, orange, pink, purple, teal, violet, white]
end{tikzpicture}

颜色控制

2.2 曲线

画一些曲线就需要使用circle、rectangle、arc等进行约束。

begin{tikzpicture}
draw[help lines] (0,0) grid(5,5);
draw[blue] (1,1) rectangle(3,3); % 正方形 需要左下角坐标和右上角坐标
draw[red] (2,2) circle[radius=2]; %圆形 需要圆心坐标和半径
draw[green] (1,0) arc [radius=1,start angle=180,end angle=360];
draw[<->, rounded corners, thick, purple] (0,5) -- (0,0) -- (5,0);
end{tikzpicture}

结果展示

begin{tikzpicture}
draw[help lines] (0,0) grid(6,3);
draw[blue, thick] (0,0) to[out=90,in=180] (1,1) to[in=270,out=360] (2,2)
to[in=180,out=90] (3,3) to[in=90,out=360] (4,2) to[in=180,out=270] (5,1) 
to[in=90, out=0] (6,0);
end{tikzpicture}

这是练习画弧线的时候想练习的一个例子,结果如下

结果展示

in代表进入的角度,out代表出来时候的角度,为了方便,笔者画了一个辅助图,对照代码方便理解。

参考

2.3 画函数曲线

begin{tikzpicture}[xscale=6,yscale=6]
draw[<->] (0,0.8) -- (0,0) -- (0.8,0);
draw[green,thick,domain=0:0.5]
plot(x, {0.025+x*x});
draw[red, thick, domain=0:0.5]
plot(x, {sqrt(x)});
draw[blue, thick, domain=0:0.5]
plot(x, {abs(x)});
end{tikzpicture}

domain限制变量范围,然后可以画图,结果如下:

绘制函数曲线

2.4 填充

begin{tikzpicture}
draw[fill=red,ultra thick] (0,0) rectangle(1,1);
draw[fill=red,ultra thin, red] (2,0) rectangle(3,1);
draw[fill] (5,0) circle[radius=1];
draw [fill=orange] (9,0) rectangle (11,1);
draw [fill=white] (9.25,0.25) rectangle (10,1.5);
path [fill=gray] (0,-2) rectangle (1.5,-3);
draw [fill=yellow] (2,-2) rectangle (3.5,-3);
end{tikzpicture}

通过fill参数控制结果,效果如下:

填充结果

2.6 添加文字

使用node

node [<options>] (<name>) at (<coordinate>) {<text>};

举个例子:

begin{tikzpicture}[scale=2]
draw [thick, <->] (0,1) -- (0,0) -- (1,0);
draw[fill] (1,1) circle [radius=0.025];
node [below right, red] at (.5,.75) {below right};
node [above left, green] at (.5,.75) {above left};
node [below left, purple] at (.5,.75) {below left};
node [above right, magenta] at (.5,.75) {above right};
end{tikzpicture}

添加文字效果

其实CNN画图主要用的是画一条线的功能,下面来看如何画CNN。

3. 绘制一个CNN模块

对于一个初学者来说,https://github.com/HarisIqbal88/PlotNeuralNet 这个库虽然画的很好,但是难度曲线太高了,退而求其次,使用https://github.com/pprp/SimpleCVReproduction/tree/master/tikz_cnn 进行解析。

首先介绍一个LaTeX中用于封装的命令,newcommand,当我们不希望写很长的命令,那就需要类似函数的一个方式,封装好固定的操作,根据传入参数完成执行。

newcommand<命令>[<参数个数>][<首参数默认值>]{<具体的定义>}

举一个例子:

newcommandloves[2]{#1 喜欢 #2}
loves{我}{你}

输出结果就是:我喜欢你

newcommand{networkLayer}[9]{
	% Define the macro.
	% 1st argument: Height and width of the layer rectangle slice.
	% 2nd argument: Depth of the layer slice
	% 3rd argument: X Offset --> use it to offset layers from previously drawn layers.
	% 4th argument: Y Offset --> Use it when an output needs to be fed to multiple layers that are on the same X offset.
	% 5th argument: Z Offset --> Use to offset layers from previous
	% 6th argument: Options for filldraw.
	% 7th argument: Text to be placed below this layer.
	% 8th argument: Name of coordinates. When name = "start" this resets the offset counter
	% 9th argument: list of nodes to connect to (previous layers)
	% 全局变量
	xdeftotalOffset{totalOffset}
 	ifthenelse{equal{#8} {start}}
 	{FPset{totalOffset}{0}}
 	{}
 	FPevalcurrentOffset{0+(totalOffset)+(#3)}

	defhw{#1} % Used to distinguish input resolution for current layer.
	defb{0.02}
	defc{#2} % Width of the cube to distinguish number of input channels for current layer.
	defx{currentOffset} % X offset for current layer.
	defy{#4} % Y offset for current layer.
	defz{#5} % Z offset for current layer.
	definText{#7}

    % Define references to points on the cube surfaces
    coordinate (#8_front) at  (x+c  , z      , y);
    coordinate (#8_back) at   (x     , z      , y);
    coordinate (#8_top) at    (x+c/2, z+hw/2, y);
    coordinate (#8_bottom) at (x+c/2, z-hw/2, y);
    
 	% Define cube coords
	coordinate (blr) at (c+x,  -hw/2+z,  -hw/2+y); %back lower right
	coordinate (bur) at (c+x,   hw/2+z,  -hw/2+y); %back upper right
	coordinate (bul) at (0 +x,   hw/2+z,  -hw/2+y); %back upper left
	coordinate (fll) at (0 +x,  -hw/2+z,   hw/2+y); %front lower left
	coordinate (flr) at (c+x,  -hw/2+z,   hw/2+y); %front lower right
	coordinate (fur) at (c+x,   hw/2+z,   hw/2+y); %front upper right
	coordinate (ful) at (0 +x,   hw/2+z,   hw/2+y); %front upper left
	

    % Draw connections from other points to the back of this node
    ifthenelse{equal{#9} {}}
 	{} % 为空什么都不做
 	{ % 非空 开始画层与层之间的连线
 	    foreach val in #9
 	    % val = start_front
 	        draw[line width=0.3mm] (val)--(#8_back);
 	}
 	
	% Draw the layer body.
	% back plane
	draw[line width=0.3mm](blr) -- (bur) -- (bul);
	% front plane
	draw[line width=0.3mm](fll) -- (flr) node[midway,below] {inText} -- (fur) -- (ful) -- (fll);
	draw[line width=0.3mm](blr) -- (flr);
	draw[line width=0.3mm](bur) -- (fur);
	draw[line width=0.3mm](bul) -- (ful);

	% Recolor visible surfaces
	% front plane
	filldraw[#6] ($(fll)+(b,b,0)$) -- ($(flr)+(-b,b,0)$) -- ($(fur)+(-b,-b,0)$) -- ($(ful)+(b,-b,0)$) -- ($(fll)+(b,b,0)$);
	filldraw[#6] ($(ful)+(b,0,-b)$) -- ($(fur)+(-b,0,-b)$) -- ($(bur)+(-b,0,b)$) -- ($(bul)+(b,0,b)$);

	% Colored slice.
	ifthenelse {equal{#6} {}}
	{} % Do not draw colored slice if #6 is blank.
	% Else, draw a colored slice.
	{filldraw[#6] ($(flr)+(0,b,-b)$) -- ($(blr)+(0,b,b)$) -- ($(bur)+(0,-b,b)$) -- ($(fur)+(0,-b,-b)$);}

	FPevaltotalOffset{0+(currentOffset)+c}

	draw[ultra thick, red] (#8_back) circle[radius=0.02];
	node[left] at (#8_back) {back};
	
	draw[ultra thick, red] (#8_top) circle[radius=0.02];
	node[above] at (#8_top) {top};
	
	draw[ultra thick, red] (#8_bottom) circle[radius=0.02];
	node[below] at (#8_bottom) {bottom};
	
	draw[ultra thick, red] (#8_front) circle[radius=0.02];
	node[left] at (#8_front) {front};
}

假设以下命令调用,结果会是什么?

begin{tikzpicture}[scale=2]
draw[help lines] (0,0) grid(2,2);
draw[->,thick] (0,0,0) -- (0,0,2);
draw[->,thick] (0,0,0) -- (0,2,0);
draw[->,thick] (0,0,0) -- (2,0,0);
draw[->,thick] (0,0,0) -- (2,2,0);
draw[->,thick] (0,0,0) -- (1,2,0);
draw[->,thick] (0,0,0) -- (0,2,2);
draw[->,thick] (0,0,0) -- (2,0,2);
draw[dotted,thick] (0,0,2) -- (0,2,2);
draw[dotted,thick] (0,2,0) -- (0,2,2);
draw[dotted,thick] (0,0,2) -- (2,0,2);
draw[dotted,thick] (2,0,0) -- (2,0,2);
draw[dotted,thick] (1,0,0) -- (1,0,2);
draw[dotted,thick] (0,0,1) -- (2,0,1);
draw[<->, thick] (0,2) -- (0,0) -- (2,0);
			%HW -D -  x- y- z - fill color -  text - 坐标 - 链接
networkLayer{1}{0.5}{0}{0}{0}{color=green!20}{conv1}{}{}
end{tikzpicture}

显示结果如下:

可视化一个模块

卷积神经网络的示意图实际上是一个个立方体构成的,立方体之间可能会有额外连线,代表特征融合;还可能需要题注,为这个特征图立方体进行命名;必须要有立方体的位置信息,长宽高;还需要颜色填充的功能;

综合以上需求,这个函数提供了9个参数分别是:

  • #1 H&W 控制立方体右侧这一面的高度,默认为正方形。
  • #2 Depth 控制深度
  • #3 X 方向上的偏置
  • #4 Y方向上的偏置
  • #5 Z方向上的偏置
  • #6 填充的颜色
  • #7 Text展示的文本,放在最下侧
  • #8 坐标名称,通过命名便于#9访问
  • #9 通过名称指定连接位置,用于连接前方层的时候使用

前两个参数示意图

由于每绘制一个立方体,右侧立方体的X偏置就应该加上左侧立方体的Depth值,这部分代码这样处理的。

FPset{totalOffset}{0} % 设置全局变量totaloffset	
xdeftotalOffset{totalOffset}
ifthenelse{equal{#8} {start}}
% 如果#8坐标名称为start,那么将totaloffset归零
{FPset{totalOffset}{0}}
{}% 否则什么都不做
FPevalcurrentOffset{0+(totalOffset)+(#3)}
% 计算当前offset也就是#3 X+totalOffset

赋值过程:

defhw{#1} % Used to distinguish input resolution for current layer.
defb{0.02}
defc{#2} % Width of the cube to distinguish number of input channels for current layer.
defx{currentOffset} % X offset for current layer.
defy{#4} % Y offset for current layer.
defz{#5} % Z offset for current layer.
definText{#7}

计算立方体表面坐标(将点可视化是额外添加的,为了便于理解)

% Define references to points on the cube surfaces
coordinate (#8_front) at  (x+c  , z      , y);
coordinate (#8_back) at   (x     , z      , y);
coordinate (#8_top) at    (x+c/2, z+hw/2, y);
coordinate (#8_bottom) at (x+c/2, z-hw/2, y);

计算7个顶点位置,被挡住的也可以计算,但是因为这里不打算绘制所以不计算。

7个顶点示意图

% Define cube coords
coordinate (blr) at (c+x,  -hw/2+z,  -hw/2+y); %back lower right
coordinate (bur) at (c+x,   hw/2+z,  -hw/2+y); %back upper right
coordinate (bul) at (0 +x,   hw/2+z,  -hw/2+y); %back upper left
coordinate (fll) at (0 +x,  -hw/2+z,   hw/2+y); %front lower left
coordinate (flr) at (c+x,  -hw/2+z,   hw/2+y); %front lower right
coordinate (fur) at (c+x,   hw/2+z,   hw/2+y); %front upper right
coordinate (ful) at (0 +x,   hw/2+z,   hw/2+y); %front upper left

绘制立方块之间的连线:

% Draw connections from other points to the back of this node
ifthenelse{equal{#9} {}}
{} % 为空什么都不做
{ % 非空 开始画层与层之间的连线
foreach val in #9
% val = start_front
draw[line width=0.3mm] (val)--(#8_back);
}

绘制立方体主体部分,也就是将7个点连接起来。

% back plane
draw[line width=0.3mm](blr) -- (bur) -- (bul);
% front plane
draw[line width=0.3mm](fll) -- (flr) node[midway,below] {inText} -- (fur) -- (ful) -- (fll);
draw[line width=0.3mm](blr) -- (flr);
draw[line width=0.3mm](bur) -- (fur);
draw[line width=0.3mm](bul) -- (ful);

填充颜色:

% front plane
filldraw[#6] ($(fll)+(b,b,0)$) -- ($(flr)+(-b,b,0)$) -- ($(fur)+(-b,-b,0)$) -- ($(ful)+(b,-b,0)$) -- ($(fll)+(b,b,0)$);
filldraw[#6] ($(ful)+(b,0,-b)$) -- ($(fur)+(-b,0,-b)$) -- ($(bur)+(-b,0,b)$) -- ($(bul)+(b,0,b)$);

% Colored slice.
ifthenelse {equal{#6} {}}
{} % Do not draw colored slice if #6 is blank.
% Else, draw a colored slice.
{filldraw[#6] ($(flr)+(0,b,-b)$) -- ($(blr)+(0,b,b)$) -- ($(bur)+(0,-b,b)$) -- ($(fur)+(0,-b,-b)$);}

一个卷积神经网络结构图

上边的图是通过以下代码生成的:

begin{tikzpicture}

% INPUT
networkLayer{3.0}{0.03}{0.0}{0.0}{0.0}{color=gray!80}{}{start}{}

% ENCODER
networkLayer{3.0}{0.1}{0.5}{0.0}{0.0}{color=white}{conv}{}{}    % S1
networkLayer{3.0}{0.1}{0.1}{0.0}{0.0}{color=white}{}{}{}        % S2
networkLayer{2.5}{0.2}{0.1}{0.0}{0.0}{color=white}{conv}{}{}    % S1
networkLayer{2.5}{0.2}{0.1}{0.0}{0.0}{color=white}{}{}{}        % S2
networkLayer{2.0}{0.4}{0.1}{0.0}{0.0}{color=white}{conv}{}{}    % S1
networkLayer{2.0}{0.4}{0.1}{0.0}{0.0}{color=white}{}{}{}        % S2
networkLayer{1.5}{0.8}{0.1}{0.0}{0.0}{color=white}{conv}{}{}    % S1
networkLayer{1.5}{0.8}{0.1}{0.0}{0.0}{color=white}{}{}{}        % S2
networkLayer{1.0}{1.5}{0.1}{0.0}{0.0}{color=white}{conv}{}{}    % S1
networkLayer{1.0}{1.5}{0.1}{0.0}{0.0}{color=white}{}{mid}{}        % S2

networkLayer{1.0}{0.5}{1.5}{0.0}{-1.5}{color=green!50}{}{bot}{{mid_front}}
networkLayer{1.0}{0.5}{-0.5}{0.0}{1.5}{color=green!50}{}{top}{{mid_front}}
networkLayer{1.0}{0.5}{1.5}{0.0}{0.0}{color=blue!50}{sum}{}{{bot_front,top_front}}

% DECODER
networkLayer{1.0}{1.5}{0.1}{0.0}{0.0}{color=white}{deconv}{}{} % S1
networkLayer{1.0}{1.5}{0.1}{0.0}{0.0}{color=white}{}{}{}       % S2
networkLayer{1.5}{0.8}{0.1}{0.0}{0.0}{color=white}{deconv}{}{} % S1
networkLayer{1.5}{0.8}{0.1}{0.0}{0.0}{color=white}{}{}{}       % S2
networkLayer{2.0}{0.4}{0.1}{0.0}{0.0}{color=white}{}{}{}       % S1
networkLayer{2.0}{0.4}{0.1}{0.0}{0.0}{color=white}{}{}{}       % S2
networkLayer{2.5}{0.2}{0.1}{0.0}{0.0}{color=white}{}{}{}       % S1
networkLayer{2.5}{0.2}{0.1}{0.0}{0.0}{color=white}{}{}{}       % S2
networkLayer{3.0}{0.1}{0.1}{0.0}{0.0}{color=white}{}{}{}       % S1
networkLayer{3.0}{0.1}{0.1}{0.0}{0.0}{color=white}{}{}{}       % S2

% OUTPUT
networkLayer{3.0}{0.05}{0.9}{0.0}{0.0}{color=red!40}{}{}{}     % Pixelwise segmentation with classes.

end{tikzpicture}

需要注意的是#8和#9命令,mid_front代表的是链接#8=mid的front部分,front也可以被top、back、bottom取代。