Python多任务-线程

时间:2022-07-26
本文章向大家介绍Python多任务-线程,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

一个简单的线程

import time
import threading

def task1(arg):
    while True:
        print("--%s--" % arg)
        time.sleep(0.1)

def task2(arg):
    while True:
        print("--%s--" % arg)
        time.sleep(0.1)

def main():
    t1 = threading.Thread(target = task1,args = (1,))
    t2 = threading.Thread(target = task2,args = (2,))
    t1.start()
    t2.start()

if __name__ == '__main__':
    main()
"""
--1--
--2--
--1--
--2--
--1--
--2--
--1--
--2--
--1--
--2--
....
"""

打印当前所有线程

print(threading.enumerate())

线程执行代码的封装

通过使用threading模块能完成多任务的程序开发,为了让每个线程的封装性更完美,所以使用threading模块时,往往会定义一个新的子类class,只要继承threading.Thread就可以了,然后重写run方法。

#coding=utf-8
import threading
import time

class MyThread(threading.Thread):
    def run(self):
        for i in range(3):
            time.sleep(1)
            # name属性中保存的是当前线程的名字
            msg = self.name+':'+str(i)
            print(msg)

if __name__ == '__main__':
    t = MyThread()
    t.start()

python的threading.Thread类有一个run方法,用于定义线程的功能函数,可以在自己的线程类中覆盖该方法。而创建自己的线程实例后,通过Thread类的start方法,可以启动该线程,交给python虚拟机进行调度,当该线程获得执行的机会时,就会调用run方法执行线程。

多线程共享全局变量

from threading import Thread
import time

def work1(nums):
    nums.append(44)
    print("----in work1---",nums)

def work2(nums):
    #延时一会,保证t1线程中的事情做完
    time.sleep(1)
    print("----in work2---",nums)

g_nums = [11,22,33]

t1 = Thread(target=work1, args=(g_nums,))
t1.start()

t2 = Thread(target=work2, args=(g_nums,))
t2.start()

# 运行结果:
#
# ----in work1--- [11, 22, 33, 44]
# ----in work2--- [11, 22, 33, 44]
  • 在一个进程内的所有线程共享全局变量,很方便在多个线程间共享数据
  • 缺点就是,线程是对全局变量随意遂改可能造成多线程之间对全局变量的混乱(即线程非安全)

互斥锁

当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制

线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。

互斥锁为资源引入一个状态:锁定/非锁定

某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

# 创建锁
mutex = threading.Lock()

# 锁定
mutex.acquire()

# 释放
mutex.release()

注意:

  • 如果这个锁之前是没有上锁的,那么acquire不会堵塞
  • 如果在调用acquire对这个锁上锁之前 它已经被 其他线程上了锁,那么此时acquire会堵塞,直到这个锁被解锁为止

使用互斥锁完成2个线程对同一个全局变量各加100万次的操作

import threading
import time

g_num = 0

def test1(num):
    global g_num
    for i in range(num):
        mutex.acquire()  # 上锁
        g_num += 1
        mutex.release()  # 解锁

    print("---test1---g_num=%d"%g_num)

def test2(num):
    global g_num
    for i in range(num):
        mutex.acquire()  # 上锁
        g_num += 1
        mutex.release()  # 解锁

    print("---test2---g_num=%d"%g_num)

# 创建一个互斥锁
# 默认是未上锁的状态
mutex = threading.Lock()

# 创建2个线程,让他们各自对g_num加1000000次
p1 = threading.Thread(target=test1, args=(1000000,))
p1.start()

p2 = threading.Thread(target=test2, args=(1000000,))
p2.start()

# 等待计算完成
while len(threading.enumerate()) != 1:
    time.sleep(1)

print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)

运行结果

---test1---g_num=1909909
---test2---g_num=2000000
2个线程对同一个全局变量操作之后的最终结果是:2000000

可以看到最后的结果,加入互斥锁后,其结果与预期相符。

上锁解锁过程

当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。

每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。

线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

总结

锁的好处:

  • 确保了某段关键代码只能由一个线程从头到尾完整地执行

锁的坏处:

  • 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了
  • 由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁