点双连通分量与割点

时间:2022-05-07
本文章向大家介绍点双连通分量与割点,主要内容包括前言、点双连通分量、割点(割顶)、基本概念、基础应用、原理机制和需要注意的事项等,并结合实例形式分析了其使用技巧,希望通过本文能帮助到大家理解应用这部分内容。

前言

在图论中,除了在有向图中的强连通分量,在无向图中还有一类双连通分量

双连通分量一般是指点双连通分量

当然,还有一种叫做边双连通分量

点双连通分量

对于一个连通图,如果任意两点至少存在两条“点不重复”的路径,则说图是点双连通的(即任意两条边都在一个简单环中),点双连通的极大子图称为点双连通分量。

计算方法比较简单

在tarjan的过程中,如果由i dfs到j,并且low[j]>=dfn[i],那么进行弹栈直到j被弹出,弹出的点加上i构成了一个点双连通分量。 (实际就是在搜索树种这个点和它下面的点构成了一个双连通分量)

注意在tarjan的过程中,我们可以选择存边,也可以存点,不过存点的话边界条件要变一下

do
{
    h=s.top();s.pop();
    #¥%……&*(()
}while(h!=edge[i].v);//warning 

与二分图的关系

(1) 如果一个点双连通分量内的某些顶点在一个奇圈中(即双连通分量含有奇圈),那么这个双连通分量的其他顶点也在某个奇圈中;

(2) 如果一个点双连通分量含有奇圈,则他必定不是一个二分图。反过来也成立,这是一个充要条件。

割点(割顶)

割点:对于无向图中的点i,若去掉i点,无向图的连通快个数会增加,则称点i为割点

不难发现一个点是割点当且仅当他在多个点双里。

考虑之前求点双的过程,找到一个点双时,那个i就是一个割点。

根节点需要特判一下,必须要有至少2个孩子时才是割点。