java并发编程:Executor、Executors、ExecutorService

时间:2019-06-12
本文章向大家介绍java并发编程:Executor、Executors、ExecutorService,主要包括java并发编程:Executor、Executors、ExecutorService使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

1.Executor和ExecutorService

Executor:一个接口,其定义了一个接收Runnable对象的方法executor,其方法签名为executor(Runnable command),该方法接收一个Runable实例,它用来执行一个任务,任务即一个实现了Runnable接口的类,一般来说,Runnable任务开辟在新线程中的使用方法为:new Thread(new RunnableTask())).start(),但在Executor中,可以使用Executor而不用显示地创建线程:executor.execute(new RunnableTask()); // 异步执行

ExecutorService:是一个比Executor使用更广泛的子类接口,其提供了生命周期管理的方法,返回 Future 对象,以及可跟踪一个或多个异步任务执行状况返回Future的方法;可以调用ExecutorService的shutdown()方法来平滑地关闭 ExecutorService,调用该方法后,将导致ExecutorService停止接受任何新的任务且等待已经提交的任务执行完成(已经提交的任务会分两类:一类是已经在执行的,另一类是还没有开始执行的),当所有已经提交的任务执行完毕后将会关闭ExecutorService。因此我们一般用该接口来实现和管理多线程。

通过 ExecutorService.submit() 方法返回的 Future 对象,可以调用isDone()方法查询Future是否已经完成。当任务完成时,它具有一个结果,你可以调用get()方法来获取该结果。你也可以不用isDone()进行检查就直接调用get()获取结果,在这种情况下,get()将阻塞,直至结果准备就绪,还可以取消任务的执行。Future 提供了 cancel() 方法用来取消执行 pending 中的任务。ExecutorService 部分代码如下:

public interface ExecutorService extends Executor {
    void shutdown();
    <T> Future<T> submit(Callable<T> task);
    <T> Future<T> submit(Runnable task, T result);
    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException;
}

2.Executors类: 主要用于提供线程池相关的操作

Executors类,提供了一系列工厂方法用于创建线程池,返回的线程池都实现了ExecutorService接口。

  1. public static ExecutorService newFiexedThreadPool(int Threads) 创建固定数目线程的线程池。
  2. public static ExecutorService newCachedThreadPool():创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果没有可用的线程,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。
  3. public static ExecutorService newSingleThreadExecutor():创建一个单线程化的Executor。
  4. public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize):创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。

3.Executor VS  ExecutorService VS Executors

正如上面所说,这三者均是 Executor 框架中的一部分。Java 开发者很有必要学习和理解他们,以便更高效的使用 Java 提供的不同类型的线程池。总结一下这三者间的区别,以便大家更好的理解:

  • Executor 和 ExecutorService 这两个接口主要的区别是:ExecutorService 接口继承了 Executor 接口,是 Executor 的子接口
  • Executor 和 ExecutorService 第二个区别是:Executor 接口定义了 execute()方法用来接收一个Runnable接口的对象,而 ExecutorService 接口中的 submit()方法可以接受Runnable和Callable接口的对象。
  • Executor 和 ExecutorService 接口第三个区别是 Executor 中的 execute() 方法不返回任何结果,而 ExecutorService 中的 submit()方法可以通过一个 Future 对象返回运算结果。
  • Executor 和 ExecutorService 接口第四个区别是除了允许客户端提交一个任务,ExecutorService 还提供用来控制线程池的方法。比如:调用 shutDown() 方法终止线程池。可以通过 《Java Concurrency in Practice》 一书了解更多关于关闭线程池和如何处理 pending 的任务的知识。
  • Executors 类提供工厂方法用来创建不同类型的线程池。比如: newSingleThreadExecutor() 创建一个只有一个线程的线程池,newFixedThreadPool(int numOfThreads)来创建固定线程数的线程池,newCachedThreadPool()可以根据需要创建新的线程,但如果已有线程是空闲的会重用已有线程。

下面给出一个Executor执行Callable任务的示例代码:

import java.util.ArrayList;   
import java.util.List;   
import java.util.concurrent.*;   
  
public class CallableDemo{   
    public static void main(String[] args){   
        ExecutorService executorService = Executors.newCachedThreadPool();   
        List<Future<String>> resultList = new ArrayList<Future<String>>();   
  
        //创建10个任务并执行   
        for (int i = 0; i < 10; i++){   
            //使用ExecutorService执行Callable类型的任务,并将结果保存在future变量中   
            Future<String> future = executorService.submit(new TaskWithResult(i));   
            //将任务执行结果存储到List中   
            resultList.add(future);   
        }   
  
        //遍历任务的结果   
        for (Future<String> fs : resultList){   
                try{   
                    while(!fs.isDone);//Future返回如果没有完成,则一直循环等待,直到Future返回完成  
                    System.out.println(fs.get());     //打印各个线程(任务)执行的结果   
                }catch(InterruptedException e){   
                    e.printStackTrace();   
                }catch(ExecutionException e){   
                    e.printStackTrace();   
                }finally{   
                    //启动一次顺序关闭,执行以前提交的任务,但不接受新任务  
                    executorService.shutdown();   
                }   
        }   
    }   
}   
  
  
class TaskWithResult implements Callable<String>{   
    private int id;   
  
    public TaskWithResult(int id){   
        this.id = id;   
    }   
  
    /**  
     * 任务的具体过程,一旦任务传给ExecutorService的submit方法, 
     * 则该方法自动在一个线程上执行 
     */   
    public String call() throws Exception {  
        System.out.println("call()方法被自动调用!!!    " + Thread.currentThread().getName());   
        //该返回结果将被Future的get方法得到  
        return "call()方法被自动调用,任务返回的结果是:" + id + "    " + Thread.currentThread().getName();   
    }   
}

4.自定义线程池

自定义线程池,可以用ThreadPoolExecutor类创建,它有多个构造方法来创建线程池,用该类很容易实现自定义的线程池:

import java.util.concurrent.ArrayBlockingQueue;   
import java.util.concurrent.BlockingQueue;   
import java.util.concurrent.ThreadPoolExecutor;   
import java.util.concurrent.TimeUnit;   
  
public class ThreadPoolTest{   
    public static void main(String[] args){   
        //创建等待队列   
        BlockingQueue<Runnable> bqueue = new ArrayBlockingQueue<Runnable>(20);   
        //创建线程池,池中保存的线程数为3,允许的最大线程数为5  
        ThreadPoolExecutor pool = new ThreadPoolExecutor(3,5,50,TimeUnit.MILLISECONDS,bqueue);   
        //创建七个任务   
        Runnable t1 = new MyThread();   
        Runnable t2 = new MyThread();   
        Runnable t3 = new MyThread();   
        Runnable t4 = new MyThread();   
        Runnable t5 = new MyThread();   
        Runnable t6 = new MyThread();   
        Runnable t7 = new MyThread();   
        //每个任务会在一个线程上执行  
        pool.execute(t1);   
        pool.execute(t2);   
        pool.execute(t3);   
        pool.execute(t4);   
        pool.execute(t5);   
        pool.execute(t6);   
        pool.execute(t7);   
        //关闭线程池   
        pool.shutdown();   
    }   
}   
  
class MyThread implements Runnable{   
    @Override   
    public void run(){   
        System.out.println(Thread.currentThread().getName() + "正在执行。。。");   
        try{   
            Thread.sleep(100);   
        }catch(InterruptedException e){   
            e.printStackTrace();   
        }   
    }   
}

运行结果如下:

从结果中可以看出,七个任务是在线程池的三个线程上执行的。

ThreadPoolExecuror类的构造方法中各个参数的含义

public ThreadPoolExecutor (int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,BlockingQueue<Runnable> workQueue)

corePoolSize:线程池中所保存的核心线程数,包括空闲线程。

maximumPoolSize:池中允许的最大线程数。

keepAliveTime:线程池中的空闲线程所能持续的最长时间。

unit:持续时间的单位。

workQueue:任务执行前保存任务的队列,仅保存由execute方法提交的Runnable任务。

excute方法将一个Runnable任务添加到线程池中的顺序

  1. 如果线程池中的线程数量少于corePoolSize,即使线程池中有空闲线程,也会创建一个新的线程来执行新添加的任务;
  2. 如果线程池中的线程数量大于等于corePoolSize,但缓冲队列workQueue未满,则将新添加的任务放到workQueue中,按照FIFO的原则依次等待执行(线程池中有线程空闲出来后依次将缓冲队列中的任务交付给空闲的线程执行);
  3. 如果线程池中的线程数量大于等于corePoolSize,且缓冲队列workQueue已满,但线程池中的线程数量小于maximumPoolSize,则会创建新的线程来处理被添加的任务;
  4. 如果线程池中的线程数量等于maximumPoolSize,有4种处理方式(该构造方法调用了含有5个参数的构造方法,并将最后一个构造方法为RejectedExecutionHandler类型,它在处理线程溢出时有4种方式,这里不再细说,要了解的,自己可以阅读下源码)。

总结起来,也即是说,当有新的任务要处理时,先看线程池中的线程数量是否大于corePoolSize,再看缓冲队列workQueue是否满,最后看线程池中的线程数量是否大于maximumPoolSize。

另外,当线程池中的线程数量大于corePoolSize时,如果里面有线程的空闲时间超过了keepAliveTime,就将其移除线程池,这样,可以动态地调整线程池中线程的数量。

排队的策略:

  1. 直接提交。缓冲队列采用 SynchronousQueue,它将任务直接交给线程处理而不保持它们。如果不存在可用于立即运行任务的线程(即线程池中的线程都在工作),则试图把任务加入缓冲队列将会失败,因此会构造一个新的线程来处理新添加的任务,并将其加入到线程池中。直接提交通常要求无界 maximumPoolSizes(Integer.MAX_VALUE) 以避免拒绝新提交的任务。newCachedThreadPool采用的便是这种策略。
  2. 无界队列。使用无界队列(典型的便是采用预定义容量的 LinkedBlockingQueue,理论上是该缓冲队列可以对无限多的任务排队)将导致在所有 corePoolSize 线程都工作的情况下将新任务加入到缓冲队列中。这样,创建的线程就不会超过 corePoolSize,也因此,maximumPoolSize 的值也就无效了。当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列。newFixedThreadPool采用的便是这种策略。
  3. 有界队列。当使用有限的 maximumPoolSizes 时,有界队列(一般缓冲队列使用ArrayBlockingQueue,并制定队列的最大长度)有助于防止资源耗尽,但是可能较难调整和控制,队列大小和最大池大小需要相互折衷,需要设定合理的参数。

5.比较Executor和new Thread()

new Thread的弊端如下:

  • 每次new Thread新建对象性能差。
  • 线程缺乏统一管理,可能无限制新建线程,相互之间竞争,及可能占用过多系统资源导致死机或oom。
  • 缺乏更多功能,如定时执行、定期执行、线程中断。

相比new Thread,Java提供的四种线程池的好处在于:

  • 重用存在的线程,减少对象创建、消亡的开销,性能佳。
  • 可有效控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免堵塞。
  • 提供定时执行、定期执行、单线程、并发数控制等功能。


原文:https://blog.csdn.net/weixin_40304387/article/details/80508236

$flag 上一页 下一页