北京师范大学第十五届ACM决赛-重现赛E Euclidean Geometry (几何)

时间:2019-06-12
本文章向大家介绍北京师范大学第十五届ACM决赛-重现赛E Euclidean Geometry (几何),主要包括北京师范大学第十五届ACM决赛-重现赛E Euclidean Geometry (几何)使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

链接:https://ac.nowcoder.com/acm/contest/3/E
来源:牛客网

Euclidean Geometry
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
Special Judge, 64bit IO Format: %lld
题目描述
在某节无聊的课上,SK同学随意画了一个三角形然后用尺子量了一下,发现三边长分别为a,b,c,然后SK同学拿起圆规分别以三个顶点为圆心画了三个圆,为了使图形看上去更美观,这三个圆两两不相交也互不包含,这里认为圆的半径可以是0(称之为“点圆”),现在SK同学想知道怎么画圆才能使三个圆的面积之和最大。

输入描述:
第一行是一个正整数T(≤ 100),表示测试数据的组数, 每组测试数据只有一行,包含三个不超过100的正整数a,b,c,表示三条边的长度,保证这三条边能构成一个三角形。
输出描述:
对于每组测试数据,输出三个圆的面积之和的最大值,要求相对误差不超过1e-6。
也就是说,令输出结果为a,标准答案为b,若满足fabs((a - b)/max(1.0, b))≤1e-6,则输出结果会被认为是正确答案。
示例1
输入
复制
2
1 1 1
3 6 5
输出
复制
3.141592653590
81.681408993335
备注:
pi=acos(-1.0)=3.141592653589793238462643383...

题意:

思路:
首先我们知道圆的面积是pirr ,最终三个圆的面积和一定是一个关于r的二次函数,而且二次函数的系数a是大于0的,那么极值一定取在边界值,
再通过分析我们可以知道,对三条边排序,最大面积情况的时候一定是取中间那个边先画一个圆,然后 最大边减去中间边的值为半径再画一个圆。
如下图,面积取极值。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
const double pi=acos(-1);
int a[maxn];
int main()
{
    // freopen("D:\\code\\text\\input.txt","r",stdin);
    //freopen("D:\\code\\text\\output.txt","w",stdout);
    // cout<<5*5*pi+pi<<endl;
    int t;
    cin>>t;
    while(t--)
    {
        cin>>a[1]>>a[2]>>a[3];
        sort(a+1,a+1+3);
        double ans=a[2]*a[2]*pi+(a[3]-a[2])*(a[3]-a[2])*pi;
        cout<<fixed<<setprecision(8)<<ans<<endl;
    }
    
    
    
    return 0;
}

inline void getInt(int* p) {
    char ch;
    do {
        ch = getchar();
    } while (ch == ' ' || ch == '\n');
    if (ch == '-') {
        *p = -(getchar() - '0');
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 - ch + '0';
        }
    }
    else {
        *p = ch - '0';
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 + ch - '0';
        }
    }
}

$flag 上一页 下一页