说说Android的UI刷新机制的实现

时间:2022-07-27
本文章向大家介绍说说Android的UI刷新机制的实现,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

本文主要解决以下几个问题:

  1. 我们都知道Android的刷新频率是60帧/秒,这是不是意味着每隔16ms就会调用一次onDraw方法?
  2. 如果界面不需要重绘,那么16ms到后还会刷新屏幕吗?
  3. 我们调用invalidate()之后会马上进行屏幕刷新吗?
  4. 我们说丢帧是因为主线程做了耗时操作,为什么主线程做了耗时操作就会引起丢帧?
  5. 如果在屏幕快要刷新的时候才去OnDraw()绘制,会丢帧吗?

好了,带着以上问题,我们进入源码来找寻答案。

一、屏幕绘制流程

屏幕绘制机制的基本原理可以概括如下:

整个屏幕绘制的基本流程是:

  • 应用向系统服务申请buffer
  • 系统服务返回buffer
  • 应用绘制后提交buffer给系统服务

如果放到Android中来,那么就是:

在Android中,一块Surface对应一块内存,当内存申请成功后,App端才有绘图的地方。由于Android的view绘制不是今天的重点,所以这里点到为止~

二、屏幕刷新分析

屏幕刷新的时机是当Vsync信号到来的时候,具体如图:

在Android端,是谁在控制 Vsync 的产生?又是谁来通知我们应用进行刷新的呢? 在Android中, Vysnc 信号的产生是由底层 HWComposer 负责的,而通知应用进行刷新,是Java层的 Choreographer ,Android整个屏幕刷新的核心就在于这个 Choreographer

下面我们结合代码一起来看一下。

每次当我们要进行ui重绘的时候,都会调用 requestLayout() ,所以,我们从这个方法入手:

2.1 requestLayout()

----》类名:ViewRootImpl

  @Override
  public void requestLayout() {
    if (!mHandlingLayoutInLayoutRequest) {
      checkThread();
      mLayoutRequested = true;
      //重点
      scheduleTraversals();
    }
  }

2.2 scheduleTraversals()

----》类名:ViewRootImpl

  void scheduleTraversals() {
    if (!mTraversalScheduled) {
      mTraversalScheduled = true;
      mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
      mChoreographer.postCallback(
          Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
      ......
    }
  }

可以看到,在这里并没有立即进行重绘,而是做了两件事情:

  • 往消息队列里面插入一条SyncBarrier(同步屏障)
  • 通过Cherographer post了一个callback

接下来,我们简单说一下这个 SyncBarrier (同步屏障)。

异步屏障的作用在于:

  • 阻止同步消息的执行
  • 优先执行异步消息

为什么要设计这个 SyncBarrier 呢?主要原因在于,在Android中,有些消息是十分紧急的,需要马上执行,如果说消息队列里面普通消息太多的话,那等到执行它的时候可能早就过了时机了。

到这里,可能有人会跟我一样,觉得为什么不干脆在Message里搞个优先级,按照优先级来进行排序呢?弄个 PriorityQueue 不就完了吗?

我自己的理解是,在Android中,消息队列的设计是一个 单链表 ,整个链表的排序是根据时间进行排序的,如果此时再加入一个优先级的排序规则,一方面会复杂会排序规则,另一方面,也会使得消息不可控。因为优先级是可以用户自己在外面填的,那样不就乱套了吗?如果用户每次总填最高的优先级,这样就会导致系统消息很久才会消费,整个系统运作就会出问题,最后影响用户体验,所以,我自己觉得Android的同步屏障这个设计还是挺巧妙的~

好了,总结一下,执行 scheduleTraversals() 后,会插入一个屏障,保证异步消息的优先执行。

插入一个小小的思考题: 如果说我们在一个方法里连续调用了 requestLayout() 多次,那么请问:系统会插入多条屏障或者 post 多个 Callback 吗? 答案是不会,为什么呢?看到 mTraversalScheduled 这个变量了吗?它就是答案~

2.3 Choreographer.postCallback()

先来简单说一下 ChoreographerChoreographer 中文翻译叫 编舞者 ,它的主要作用是进行系统协调的。(大家可以上网google下实际工作中的编舞者,这个类名真的起的很贴切了~)

Choreographer 这个类是应用怎么初始化的呢?是通过 getInstance() 方法:

 public static Choreographer getInstance() {
    return sThreadInstance.get();
  }
  
    // Thread local storage for the choreographer.
  private static final ThreadLocal<Choreographer  sThreadInstance =
      new ThreadLocal<Choreographer () {
    @Override
    protected Choreographer initialValue() {
      Looper looper = Looper.myLooper();
      if (looper == null) {
        throw new IllegalStateException("The current thread must have a looper!");
      }
      Choreographer choreographer = new Choreographer(looper, VSYNC_SOURCE_APP);
      if (looper == Looper.getMainLooper()) {
        mMainInstance = choreographer;
      }
      return choreographer;
    }
  };

这里贴出来是为了提醒大家, Choreographer 不是单例,而是每个线程都有单独的一份。

好了,回到我们的代码:

 ----》类名:Choreographer
 //1
  public void postCallback(int callbackType, Runnable action, Object token) {
    postCallbackDelayed(callbackType, action, token, 0);
  }
 //2 
   public void postCallbackDelayed(int callbackType,
      Runnable action, Object token, long delayMillis) {
    ....
    postCallbackDelayedInternal(callbackType, action, token, delayMillis);
  }
  //3
   private void postCallbackDelayedInternal(int callbackType,
      Object action, Object token, long delayMillis) {
        ...
        mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);
        if (dueTime <= now) {
        scheduleFrameLocked(now);
      } else {
        ...
       }
      }

Choreographer post的callback会放入 CallbackQueue 里面,这个 CallbackQueue 是一个单链表。

首先会根据callbackType得到一条 CallbackQueue 单链表,之后会根据时间顺序,将这个callback插入到单链表中;

2.4 scheduleFrameLocked()

 ----》类名:Choreographer
 private void scheduleFrameLocked(long now) {
    ...
    // If running on the Looper thread, then schedule the vsync immediately,
        // otherwise post a message to schedule the vsync from the UI thread
        // as soon as possible.
        if (isRunningOnLooperThreadLocked()) {
          scheduleVsyncLocked();
        } else {
          Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
          msg.setAsynchronous(true);
          mHandler.sendMessageAtFrontOfQueue(msg);
        }
      } else {
        ...
      }
    }
  }

scheduleFrameLocked 的作用是:

  • 如果当前线程就是 Cherographer 的工作线程的话,那么就直接执行 scheduleVysnLocked
  • 否则,就发送一个异步消息到消息队列里面去 ,这个异步消息是不受同步屏障影响的,而且这个消息还要插入到消息队列的头部,可见这个消息是非常紧急的

跟踪源代码,我们发现,其实 MSG_DO_SCHEDULE_VSYNC 这条消息,最终执行的也是 scheduleFrameLocked 这个方法,所以我们直接跟踪 scheduleVsyncLocked() 这个方法。

2.5 scheduleVsyncLocked()

 ----》类名:Choreographer
 
  private void scheduleVsyncLocked() {
    mDisplayEventReceiver.scheduleVsync();
  }
  
 ----》类名:DisplayEventReceiver
 
    public void scheduleVsync() {
    if (mReceiverPtr == 0) {
      Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
          + "receiver has already been disposed.");
    } else {
    //mReceiverPtr是Native层一个类的指针地址
    //这里这个类指的是底层NativeDisplayEventReceiver这个类
    //nativeScheduleVsync底层会调用到requestNextVsync()去请求下一个Vsync,
    //具体不跟踪了,native层代码更长,还涉及到各种描述符监听以及跨进程数据传输
      nativeScheduleVsync(mReceiverPtr);
    }
  }

这里我们可以看到一个新的类: DisplayEventReceiver ,这个类的作用是注册Vsync信号的监听,当下个Vsync信号到来的时候就会通知到这个 DisplayEventReceiver 了。

在哪里通知呢?源码里注释写的非常清楚了:

 ----》类名:DisplayEventReceiver
 
  // Called from native code. <---注释还是很良心的
  private void dispatchVsync(long timestampNanos, int builtInDisplayId, int frame) {
    onVsync(timestampNanos, builtInDisplayId, frame);
  }

当下一个Vysnc信号到来的时候,会最终调用 onVsync 方法:

 public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
  }

点进去一看,是个空实现,回到类定义,原来是个抽象类,它的实现类是: FrameDisplayEventReceiver ,定义在 Cherographer 里面:

 ----》类名:Choreographer
 
private final class FrameDisplayEventReceiver extends DisplayEventReceiver
      implements Runnable {
      ....
      }

2.6 FrameDisplayEventReceiver.onVysnc()

 ----》类名:Choreographer
 
 private final class FrameDisplayEventReceiver extends DisplayEventReceiver
      implements Runnable {

    @Override
    public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
       ....
      mTimestampNanos = timestampNanos;
      mFrame = frame;
      Message msg = Message.obtain(mHandler, this);
      msg.setAsynchronous(true);
      mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
    }

    @Override
    public void run() {
      ....
      doFrame(mTimestampNanos, mFrame);
    }
  }

onVsync 方法往 Cherographer 所在线程的消息队列中发送的一个消息,这个消息是就是它自己(它实现了Runnable),所以最终会调用到 doFrame() 方法。

2.7 doFrame(mTimestampNanos, mFrame)

doFrame()的处理分为两个阶段:

  void doFrame(long frameTimeNanos, int frame) {
    final long startNanos;
    synchronized (mLock) {
      //1、阶段一
      long intendedFrameTimeNanos = frameTimeNanos;
      startNanos = System.nanoTime();
      final long jitterNanos = startNanos - frameTimeNanos;
      if (jitterNanos  = mFrameIntervalNanos) {
        final long skippedFrames = jitterNanos / mFrameIntervalNanos;
        if (skippedFrames  = SKIPPED_FRAME_WARNING_LIMIT) {
          Log.i(TAG, "Skipped " + skippedFrames + " frames! "
              + "The application may be doing too much work on its main thread.");
        }
        ...
      }
      ...
    }

frameTimeNanos 是当前的时间戳,将当前的时间和开始时间相减,得到这一帧处理花费了多长,如果大于 mFrameIntervalNano ,说明处理耗时了,之后就打印出我们日常见到的 The application may be doing too much work on its main thread

阶段二:

 void doFrame(long frameTimeNanos, int frame) {
 ...
try {
//阶段2
      Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
      AnimationUtils.lockAnimationClock(frameTimeNanos / TimeUtils.NANOS_PER_MS);

      mFrameInfo.markInputHandlingStart();
      doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);

      mFrameInfo.markAnimationsStart();
      doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);

      mFrameInfo.markPerformTraversalsStart();
      doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);

      doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
    } 
    ...
    }

doFrame() 的第二个阶段做的是处理各种callback,从CallbackQueue里面取出到执行时间的callback进行处理,那这个callback是怎么样呢?

这里要回忆一下之前的 postCallback() 操作:

这个 Callback 其实就一个 mTraversalRunnable ,它是一个 Runnable ,最终会调用到 run() 方法,实现界面的真正刷新:

 ----》类名:ViewRootImpl

  final class TraversalRunnable implements Runnable {
    @Override
    public void run() {
      doTraversal();
    }
  }
  
  void doTraversal() {
    if (mTraversalScheduled) {
     ...
      performTraversals();
     ...
    }
  }
  
  private void performTraversals() {
   ...
   //开始真正的界面绘制
    performDraw();
   ...
  }

三、总结

经过漫长的代码跟踪,整个界面刷新流程算是跟踪完了,下面我们来总结一下:

四、问题解答

我们都知道Android的刷新频率是60帧/秒,这是不是意味着每隔16ms就会调用一次onDraw方法?

这里60帧/秒是屏幕刷新频率,但是是否会调用onDraw()方法要看应用是否调用requestLayout()进行注册监听。

如果界面不需要重绘,那么还16ms到后还会刷新屏幕吗?

如果不需要重绘,那么应用就不会受到Vsync信号,但是还是会进行刷新,只不过绘制的数据不变而已;

我们调用invalidate()之后会马上进行屏幕刷新吗?

不会,到等到下一个Vsync信号到来

我们说丢帧是因为主线程做了耗时操作,为什么主线程做了耗时操作就会引起丢帧

原因是,如果在主线程做了耗时操作,就会影响下一帧的绘制,导致界面无法在这个Vsync时间进行刷新,导致丢帧了。

如果在屏幕快要刷新的时候才去OnDraw()绘制,会丢帧吗?

这个没有太大关系,因为Vsync信号是周期的,我们什么时候发起onDraw()不会影响界面刷新;

五、参考文档

gityuan大神的 Cherographer原理 慕课视频

到此这篇关于说说Android的UI刷新机制的实现的文章就介绍到这了,更多相关Android UI刷新机制内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!