python实现随机森林

时间:2022-07-23
本文章向大家介绍python实现随机森林,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

什么是随机森林?

机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。要想理解好随机森林,就首先要了解决策树。

可以参考:

https://www.cnblogs.com/xiximayou/p/12882367.html

随机森林的工作原理?

1. 从数据集(表)中随机选择k个特征(列),共m个特征(其中k小于等于m)。然后根据这k个特征建立决策树。

2. 重复n次,这k个特性经过不同随机组合建立起来n棵决策树(或者是数据的不同随机样本,称为自助法样本)。

3. 对每个决策树都传递随机变量来预测结果。存储所有预测的结果(目标),你就可以从n棵决策树中得到n种结果。

4. 计算每个预测目标的得票数再选择模式(最常见的目标变量)。换句话说,将得到高票数的预测目标作为随机森林算法的最终预测。

针对回归问题,随机森林中的决策树会预测Y的值(输出值)。通过随机森林中所有决策树预测值的平均值计算得出最终预测值。而针对分类问题,随机森林中的每棵决策树会预测最新数据属于哪个分类。最终,哪一分类被选择最多,就预测这个最新数据属于哪一分类。

随机森林的优点和缺点?

优点:

1. 可以用来解决分类和回归问题:随机森林可以同时处理分类和数值特征。

2. 抗过拟合能力:通过平均决策树,降低过拟合的风险性。

3. 只有在半数以上的基分类器出现差错时才会做出错误的预测:随机森林非常稳定,即使数据集中出现了一个新的数据点,整个算法也不会受到过多影响,它只会影响到一颗决策树,很难对所有决策树产生影响。

缺点:

1. 据观测,如果一些分类/回归问题的训练数据中存在噪音,随机森林中的数据集会出现过拟合的现象。

2. 比决策树算法更复杂,计算成本更高。

3. 由于其本身的复杂性,它们比其他类似的算法需要更多的时间来训练。

如何理解随机森林的“随机”?

主要体现在两个方面:

1.数据的随机选取:从原始数据中采取有放回的抽样。

2.特征的随机选取:每次随机选取k个特征构造一棵树。

参考:

百度百科

https://baijiahao.baidu.com/s?id=1632582851666395020&wfr=spider&for=pc

下面是代码实现,代码来源: https://github.com/eriklindernoren/ML-From-Scratch

from __future__ import division, print_function
import numpy as np
import math
import progressbar

# Import helper functions
from mlfromscratch.utils import divide_on_feature, train_test_split, get_random_subsets, normalize
from mlfromscratch.utils import accuracy_score, calculate_entropy
from mlfromscratch.unsupervised_learning import PCA
from mlfromscratch.supervised_learning import ClassificationTree
from mlfromscratch.utils.misc import bar_widgets
from mlfromscratch.utils import Plot


class RandomForest():
    """Random Forest classifier. Uses a collection of classification trees that
    trains on random subsets of the data using a random subsets of the features.

    Parameters:
    -----------
    n_estimators: int
        The number of classification trees that are used.
    max_features: int
        The maximum number of features that the classification trees are allowed to
        use.
    min_samples_split: int
        The minimum number of samples needed to make a split when building a tree.
    min_gain: float
        The minimum impurity required to split the tree further. 
    max_depth: int
        The maximum depth of a tree.
    """
    def __init__(self, n_estimators=100, max_features=None, min_samples_split=2,
                 min_gain=0, max_depth=float("inf")):
        self.n_estimators = n_estimators    # Number of trees
        self.max_features = max_features    # Maxmimum number of features per tree
        self.min_samples_split = min_samples_split
        self.min_gain = min_gain            # Minimum information gain req. to continue
        self.max_depth = max_depth          # Maximum depth for tree
        self.progressbar = progressbar.ProgressBar(widgets=bar_widgets)

        # Initialize decision trees
        self.trees = []
        for _ in range(n_estimators):
            self.trees.append(
                ClassificationTree(
                    min_samples_split=self.min_samples_split,
                    min_impurity=min_gain,
                    max_depth=self.max_depth))

    def fit(self, X, y):
        n_features = np.shape(X)[1]
        # If max_features have not been defined => select it as
        # sqrt(n_features)
        if not self.max_features:
            self.max_features = int(math.sqrt(n_features))

        # Choose one random subset of the data for each tree
        subsets = get_random_subsets(X, y, self.n_estimators)

        for i in self.progressbar(range(self.n_estimators)):
            X_subset, y_subset = subsets[i]
            # Feature bagging (select random subsets of the features)
            idx = np.random.choice(range(n_features), size=self.max_features, replace=True)
            # Save the indices of the features for prediction
            self.trees[i].feature_indices = idx
            # Choose the features corresponding to the indices
            X_subset = X_subset[:, idx]
            # Fit the tree to the data
            self.trees[i].fit(X_subset, y_subset)

    def predict(self, X):
        y_preds = np.empty((X.shape[0], len(self.trees)))
        # Let each tree make a prediction on the data
        for i, tree in enumerate(self.trees):
            # Indices of the features that the tree has trained on
            idx = tree.feature_indices
            # Make a prediction based on those features
            prediction = tree.predict(X[:, idx])
            y_preds[:, i] = prediction
            
        y_pred = []
        # For each sample
        for sample_predictions in y_preds:
            # Select the most common class prediction
            y_pred.append(np.bincount(sample_predictions.astype('int')).argmax())
        return y_pred

主运行函数:

from __future__ import division, print_function
import numpy as np
import sys
sys.path.append("/content/drive/My Drive/learn/ML-From-Scratch/")
from sklearn import datasets
from mlfromscratch.utils import train_test_split, accuracy_score, Plot
from mlfromscratch.supervised_learning import RandomForest

def main():
    data = datasets.load_digits()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=2)

    clf = RandomForest(n_estimators=100)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    Plot().plot_in_2d(X_test, y_pred, title="Random Forest", accuracy=accuracy, legend_labels=data.target_names)


if __name__ == "__main__":
    main()

运行结果:

Training: 100% [------------------------------------------------] Time: 0:02:11

Accuracy: 0.958217270194986