高维数据 |R语言数据可视化之t-SNE
时间:2022-07-22
本文章向大家介绍高维数据 |R语言数据可视化之t-SNE,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。
高维数据可视化之t-SNE算法
t-SNE算法是最近开发的一种降维的非线性算法,也是一种机器学习算法。与PCA一样是非常适合将高维度数据降低至二维或三维的一种方法,不同之处是PCA属于线性降维,不能解释复杂多项式之间的关系,而t-SNE是根据t分布随机领域的嵌入找到数据之间的结构特点。
01
原始数据
#原始数据为iris数据框,是来自鸢尾属、花斑科和维珍属的50朵花的萼片长度和宽度以及花瓣长度和宽度的测量值,包含150行,5个变量的部分数据截图如下:
02
降维处理
> iris_unique<-unique(iris)
#去除重复值
> set.seed(42)
> iris1<-as.matrix(iris_unique[,1:4])
#选取1至4列数据构成矩阵。
> tsne_out<-Rtsne(iris1)
#c++实现Barnes-Hut t-分布式随机邻居嵌入的封装器,
通过设置theta=0.0可以计算出t-SNE的准确值,
降维全靠Rtsne()函数。
> tsne_out
$N
[1] 149
$Y
[,1] [,2]
[1,] -15.794362 -6.776711
[2,] -18.120432 -6.231470
[3,] -18.261085 -7.311696
[4,] -18.520943 -7.087130
[5,] -15.778549 -7.221474
[6,] -14.008673 -7.269801
[7,] -17.893455 -7.813756
[8,] -16.467086 -6.810327
[9,] -19.221721 -6.978521
[10,] -17.803392 -6.466310
[11,] -14.445038 -6.594416
[12,] -17.100410 -7.344027
[13,] -18.414497 -6.464928
[14,] -19.408668 -7.464577
[15,] -13.275994 -6.701498
[16,] -13.149006 -7.122149
[17,] -13.890901 -6.929687
[18,] -15.771478 -6.789918
[19,] -13.700649 -6.432417
[20,] -14.852568 -7.405885
[21,] -15.093413 -5.868684
[22,] -15.141230 -7.327606
[23,] -17.943436 -8.557303
[24,] -16.259062 -5.898315
[25,] -16.997972 -7.907640
[26,] -17.825508 -5.984987
[27,] -16.383265 -6.823896
[28,] -15.438452 -6.609476
[29,] -15.772932 -6.342601
[30,] -17.844418 -7.233536
[31,] -17.907978 -6.804983
[32,] -15.149819 -5.939007
[33,] -13.898201 -7.644515
[34,] -13.421065 -7.250096
[35,] -17.747953 -6.510444
[36,] -17.257790 -6.137830
[37,] -14.564020 -6.003143
[38,] -16.193628 -7.512172
[39,] -19.165844 -7.239552
[40,] -16.147220 -6.566834
[41,] -16.104934 -7.127514
[42,] -19.608322 -6.371928
[43,] -18.891659 -7.666698
[44,] -15.795457 -7.824185
[45,] -14.644010 -8.070843
[46,] -18.380163 -6.474333
[47,] -14.788982 -7.480182
[48,] -18.361689 -7.377014
[49,] -14.677585 -6.777023
[50,] -16.850026 -6.588789
[51,] 8.536314 1.331853
[52,] 7.160654 2.222958
[53,] 8.845708 1.642313
[54,] 2.600714 2.678237
[55,] 7.608379 2.089299
[56,] 4.581609 3.175618
[57,] 7.227995 2.925564
[58,] 1.259600 2.278412
[59,] 7.658976 1.699396
[60,] 2.519998 3.124515
[61,] 1.356245 2.444995
[62,] 4.855057 2.662532
[63,] 3.194511 1.282723
[64,] 6.573616 2.933744
[65,] 2.654406 1.830627
[66,] 7.646466 1.447916
[67,] 4.740423 3.566360
[68,] 3.545194 2.042330
[69,] 5.763106 1.039076
[70,] 2.780636 2.251854
[71,] 7.123596 4.273298
[72,] 4.397361 1.856958
[73,] 8.586749 3.297060
[74,] 6.268760 2.630621
[75,] 6.569283 1.767931
[76,] 7.376409 1.575341
[77,] 8.456851 1.726707
[78,] 9.372167 2.305879
[79,] 5.871143 2.931851
[80,] 2.242621 1.746196
[81,] 2.373290 2.304550
[82,] 2.174285 2.161862
[83,] 3.296379 2.057194
[84,] 8.559505 4.180703
[85,] 4.351523 3.790885
[86,] 6.254539 3.630555
[87,] 8.222644 1.732763
[88,] 5.693089 1.089601
[89,] 3.861217 2.855112
[90,] 2.883691 2.648004
[91,] 3.519009 3.300865
[92,] 6.352661 2.839296
[93,] 3.341238 2.093332
[94,] 1.310473 2.266729
[95,] 3.544698 2.882386
[96,] 4.147667 2.748773
[97,] 4.098212 2.762276
[98,] 5.786155 2.165470
[99,] 1.204406 2.147812
[100,] 3.726652 2.550643
[101,] 12.868885 6.006482
[102,] 8.275202 4.992602
[103,] 13.818242 4.538085
[104,] 11.395916 3.733291
[105,] 12.611549 4.518063
[106,] 15.167288 4.580621
[107,] 3.256931 4.343911
[108,] 14.657778 4.221338
[109,] 12.606503 3.429156
[110,] 14.293539 5.431041
[111,] 10.913678 4.848214
[112,] 10.620091 3.985814
[113,] 12.455521 4.586778
[114,] 8.165304 5.279075
[115,] 8.537106 5.643321
[116,] 11.603757 5.419617
[117,] 11.522072 3.952109
[118,] 15.250025 5.271586
[119,] 15.472077 4.396878
[120,] 8.917063 4.108094
[121,] 13.199716 5.045357
[122,] 7.799535 5.271964
[123,] 15.305558 4.422065
[124,] 8.684753 3.689291
[125,] 12.898437 4.948861
[126,] 14.177381 4.339674
[127,] 8.090627 3.742130
[128,] 7.812402 4.082107
[129,] 11.927399 4.059812
[130,] 14.012217 3.959194
[131,] 14.560938 4.206181
[132,] 15.236393 5.268181
[133,] 12.010499 4.206740
[134,] 8.927838 3.385948
[135,] 10.179020 3.447383
[136,] 14.868648 4.698355
[137,] 12.240744 5.918564
[138,] 11.418754 3.982833
[139,] 7.492590 4.141120
[140,] 12.415297 4.801756
[141,] 12.650368 5.203968
[142,] 11.761565 5.179988
[143,] 13.361707 5.127742
[144,] 12.955958 5.557022
[145,] 11.713405 5.048448
[146,] 9.150078 4.010551
[147,] 11.016824 4.559839
[148,] 11.759284 5.917160
[149,] 8.022603 4.638540
$costs
[1] -6.569291e-05 -1.184407e-04 6.668903e-05 -4.284391e-04 1.331527e-05 -1.659447e-04
[7] 4.178618e-04 4.000721e-04 -1.471709e-04 -4.866961e-04 1.583424e-04 3.891458e-04
[13] -2.748767e-04 1.038017e-05 -1.223165e-04 -2.175199e-04 -3.052060e-04 -1.153663e-04
[19] -5.807774e-06 -1.318655e-05 1.086358e-04 -1.056506e-04 1.042230e-03 1.020565e-03
[25] 8.145448e-05 8.433778e-05 4.999846e-05 8.485467e-05 1.840803e-04 -3.276016e-04
[31] -6.551815e-04 1.557659e-04 -4.736972e-06 -4.735442e-05 -2.520546e-04 3.108438e-04
[37] 1.260465e-04 1.972264e-04 -9.611292e-05 2.441147e-04 -1.997326e-04 -7.527818e-05
[43] 1.671165e-04 5.584101e-04 4.285945e-04 -2.968739e-04 -1.330250e-05 -1.149360e-04
[49] 8.084874e-05 6.710403e-04 6.919283e-04 9.766942e-04 1.960186e-03 -1.673100e-04
[55] 1.498811e-03 1.518804e-03 1.191833e-03 3.496391e-04 8.389463e-04 7.130234e-04
[61] -5.238504e-05 1.329515e-03 1.051728e-03 2.541084e-03 -1.976349e-04 5.621641e-04
[67] 1.889274e-03 1.434286e-05 4.027971e-03 -1.166053e-04 1.719625e-03 1.638894e-03
[73] 2.473756e-03 1.286735e-03 1.833584e-03 8.951562e-04 6.807228e-04 4.984784e-03
[79] 2.823550e-03 1.089342e-04 -6.601256e-06 6.403744e-05 1.991636e-04 1.613454e-03
[85] 1.260980e-03 9.531492e-04 1.349265e-03 2.888901e-03 -1.345512e-04 2.987155e-06
[91] 5.545848e-04 2.071556e-03 3.427912e-04 3.104291e-04 5.055473e-04 2.853883e-05
[97] 5.868188e-04 2.521142e-03 5.766867e-04 3.513576e-04 3.311204e-04 1.479315e-03
[103] 1.033390e-03 1.737451e-03 5.759593e-04 2.587490e-04 1.289787e-03 4.355705e-04
[109] 1.261498e-03 4.912577e-04 3.050430e-03 3.313013e-03 9.174032e-04 1.021039e-03
[115] 1.433732e-03 1.278868e-03 1.815971e-03 2.059448e-04 5.057746e-05 1.561998e-03
[121] 5.342262e-04 1.744473e-03 2.214039e-04 2.083725e-03 3.547608e-04 5.196140e-04
[127] 1.990998e-03 2.346313e-03 1.098786e-03 8.136133e-04 5.001043e-04 1.644533e-04
[133] 6.233415e-04 2.139292e-03 8.210858e-04 -8.386480e-05 7.858205e-04 1.427453e-03
[139] 2.148709e-03 6.094865e-04 1.929748e-04 -8.357979e-05 6.223272e-04 3.127318e-04
[145] 2.927624e-04 1.391081e-03 3.127062e-03 1.176773e-03 1.645225e-03
$itercosts
[1] 43.7514985 44.7873147 44.8116650 44.3887944 45.7282669 0.3704256 0.1252816 0.1237133
[9] 0.1217102 0.1200852 0.1187576 0.1161445 0.1173155 0.1144428 0.1127897 0.1122483
[17] 0.1129056 0.1116092 0.1111795 0.1105687
$origD
[1] 4
$perplexity
[1] 30
$theta
[1] 0.5
$max_iter
[1] 1000
$stop_lying_iter
[1] 250
$mom_switch_iter
[1] 250
$momentum
[1] 0.5
$final_momentum
[1] 0.8
$eta
[1] 200
$exaggeration_factor
[1] 12
> data<-data.frame(tsne_out$Y,iris_unique$Species)
> data
X1 X2 iris_unique.Species
1 -15.794362 -6.776711 setosa
2 -18.120432 -6.231470 setosa
3 -18.261085 -7.311696 setosa
4 -18.520943 -7.087130 setosa
5 -15.778549 -7.221474 setosa
6 -14.008673 -7.269801 setosa
7 -17.893455 -7.813756 setosa
8 -16.467086 -6.810327 setosa
9 -19.221721 -6.978521 setosa
10 -17.803392 -6.466310 setosa
11 -14.445038 -6.594416 setosa
12 -17.100410 -7.344027 setosa
13 -18.414497 -6.464928 setosa
14 -19.408668 -7.464577 setosa
15 -13.275994 -6.701498 setosa
16 -13.149006 -7.122149 setosa
17 -13.890901 -6.929687 setosa
18 -15.771478 -6.789918 setosa
19 -13.700649 -6.432417 setosa
20 -14.852568 -7.405885 setosa
21 -15.093413 -5.868684 setosa
22 -15.141230 -7.327606 setosa
23 -17.943436 -8.557303 setosa
24 -16.259062 -5.898315 setosa
25 -16.997972 -7.907640 setosa
26 -17.825508 -5.984987 setosa
27 -16.383265 -6.823896 setosa
28 -15.438452 -6.609476 setosa
29 -15.772932 -6.342601 setosa
30 -17.844418 -7.233536 setosa
31 -17.907978 -6.804983 setosa
32 -15.149819 -5.939007 setosa
33 -13.898201 -7.644515 setosa
34 -13.421065 -7.250096 setosa
35 -17.747953 -6.510444 setosa
36 -17.257790 -6.137830 setosa
37 -14.564020 -6.003143 setosa
38 -16.193628 -7.512172 setosa
39 -19.165844 -7.239552 setosa
40 -16.147220 -6.566834 setosa
41 -16.104934 -7.127514 setosa
42 -19.608322 -6.371928 setosa
43 -18.891659 -7.666698 setosa
44 -15.795457 -7.824185 setosa
45 -14.644010 -8.070843 setosa
46 -18.380163 -6.474333 setosa
47 -14.788982 -7.480182 setosa
48 -18.361689 -7.377014 setosa
49 -14.677585 -6.777023 setosa
50 -16.850026 -6.588789 setosa
51 8.536314 1.331853 versicolor
52 7.160654 2.222958 versicolor
53 8.845708 1.642313 versicolor
54 2.600714 2.678237 versicolor
55 7.608379 2.089299 versicolor
56 4.581609 3.175618 versicolor
57 7.227995 2.925564 versicolor
58 1.259600 2.278412 versicolor
59 7.658976 1.699396 versicolor
60 2.519998 3.124515 versicolor
61 1.356245 2.444995 versicolor
62 4.855057 2.662532 versicolor
63 3.194511 1.282723 versicolor
64 6.573616 2.933744 versicolor
65 2.654406 1.830627 versicolor
66 7.646466 1.447916 versicolor
67 4.740423 3.566360 versicolor
68 3.545194 2.042330 versicolor
69 5.763106 1.039076 versicolor
70 2.780636 2.251854 versicolor
71 7.123596 4.273298 versicolor
72 4.397361 1.856958 versicolor
73 8.586749 3.297060 versicolor
74 6.268760 2.630621 versicolor
75 6.569283 1.767931 versicolor
76 7.376409 1.575341 versicolor
77 8.456851 1.726707 versicolor
78 9.372167 2.305879 versicolor
79 5.871143 2.931851 versicolor
80 2.242621 1.746196 versicolor
81 2.373290 2.304550 versicolor
82 2.174285 2.161862 versicolor
83 3.296379 2.057194 versicolor
84 8.559505 4.180703 versicolor
85 4.351523 3.790885 versicolor
86 6.254539 3.630555 versicolor
87 8.222644 1.732763 versicolor
88 5.693089 1.089601 versicolor
89 3.861217 2.855112 versicolor
90 2.883691 2.648004 versicolor
91 3.519009 3.300865 versicolor
92 6.352661 2.839296 versicolor
93 3.341238 2.093332 versicolor
94 1.310473 2.266729 versicolor
95 3.544698 2.882386 versicolor
96 4.147667 2.748773 versicolor
97 4.098212 2.762276 versicolor
98 5.786155 2.165470 versicolor
99 1.204406 2.147812 versicolor
100 3.726652 2.550643 versicolor
101 12.868885 6.006482 virginica
102 8.275202 4.992602 virginica
103 13.818242 4.538085 virginica
104 11.395916 3.733291 virginica
105 12.611549 4.518063 virginica
106 15.167288 4.580621 virginica
107 3.256931 4.343911 virginica
108 14.657778 4.221338 virginica
109 12.606503 3.429156 virginica
110 14.293539 5.431041 virginica
111 10.913678 4.848214 virginica
112 10.620091 3.985814 virginica
113 12.455521 4.586778 virginica
114 8.165304 5.279075 virginica
115 8.537106 5.643321 virginica
116 11.603757 5.419617 virginica
117 11.522072 3.952109 virginica
118 15.250025 5.271586 virginica
119 15.472077 4.396878 virginica
120 8.917063 4.108094 virginica
121 13.199716 5.045357 virginica
122 7.799535 5.271964 virginica
123 15.305558 4.422065 virginica
124 8.684753 3.689291 virginica
125 12.898437 4.948861 virginica
126 14.177381 4.339674 virginica
127 8.090627 3.742130 virginica
128 7.812402 4.082107 virginica
129 11.927399 4.059812 virginica
130 14.012217 3.959194 virginica
131 14.560938 4.206181 virginica
132 15.236393 5.268181 virginica
133 12.010499 4.206740 virginica
134 8.927838 3.385948 virginica
135 10.179020 3.447383 virginica
136 14.868648 4.698355 virginica
137 12.240744 5.918564 virginica
138 11.418754 3.982833 virginica
139 7.492590 4.141120 virginica
140 12.415297 4.801756 virginica
141 12.650368 5.203968 virginica
142 11.761565 5.179988 virginica
143 13.361707 5.127742 virginica
144 12.955958 5.557022 virginica
145 11.713405 5.048448 virginica
146 9.150078 4.010551 virginica
147 11.016824 4.559839 virginica
148 11.759284 5.917160 virginica
149 8.022603 4.638540 virginica
> colnames(data)<-c("Y1","Y2","Species")
> data
Y1 Y2 Species
1 -15.794362 -6.776711 setosa
2 -18.120432 -6.231470 setosa
3 -18.261085 -7.311696 setosa
4 -18.520943 -7.087130 setosa
5 -15.778549 -7.221474 setosa
6 -14.008673 -7.269801 setosa
7 -17.893455 -7.813756 setosa
8 -16.467086 -6.810327 setosa
9 -19.221721 -6.978521 setosa
10 -17.803392 -6.466310 setosa
11 -14.445038 -6.594416 setosa
12 -17.100410 -7.344027 setosa
13 -18.414497 -6.464928 setosa
14 -19.408668 -7.464577 setosa
15 -13.275994 -6.701498 setosa
16 -13.149006 -7.122149 setosa
17 -13.890901 -6.929687 setosa
18 -15.771478 -6.789918 setosa
19 -13.700649 -6.432417 setosa
20 -14.852568 -7.405885 setosa
21 -15.093413 -5.868684 setosa
22 -15.141230 -7.327606 setosa
23 -17.943436 -8.557303 setosa
24 -16.259062 -5.898315 setosa
25 -16.997972 -7.907640 setosa
26 -17.825508 -5.984987 setosa
27 -16.383265 -6.823896 setosa
28 -15.438452 -6.609476 setosa
29 -15.772932 -6.342601 setosa
30 -17.844418 -7.233536 setosa
31 -17.907978 -6.804983 setosa
32 -15.149819 -5.939007 setosa
33 -13.898201 -7.644515 setosa
34 -13.421065 -7.250096 setosa
35 -17.747953 -6.510444 setosa
36 -17.257790 -6.137830 setosa
37 -14.564020 -6.003143 setosa
38 -16.193628 -7.512172 setosa
39 -19.165844 -7.239552 setosa
40 -16.147220 -6.566834 setosa
41 -16.104934 -7.127514 setosa
42 -19.608322 -6.371928 setosa
43 -18.891659 -7.666698 setosa
44 -15.795457 -7.824185 setosa
45 -14.644010 -8.070843 setosa
46 -18.380163 -6.474333 setosa
47 -14.788982 -7.480182 setosa
48 -18.361689 -7.377014 setosa
49 -14.677585 -6.777023 setosa
50 -16.850026 -6.588789 setosa
51 8.536314 1.331853 versicolor
52 7.160654 2.222958 versicolor
53 8.845708 1.642313 versicolor
54 2.600714 2.678237 versicolor
55 7.608379 2.089299 versicolor
56 4.581609 3.175618 versicolor
57 7.227995 2.925564 versicolor
58 1.259600 2.278412 versicolor
59 7.658976 1.699396 versicolor
60 2.519998 3.124515 versicolor
61 1.356245 2.444995 versicolor
62 4.855057 2.662532 versicolor
63 3.194511 1.282723 versicolor
64 6.573616 2.933744 versicolor
65 2.654406 1.830627 versicolor
66 7.646466 1.447916 versicolor
67 4.740423 3.566360 versicolor
68 3.545194 2.042330 versicolor
69 5.763106 1.039076 versicolor
70 2.780636 2.251854 versicolor
71 7.123596 4.273298 versicolor
72 4.397361 1.856958 versicolor
73 8.586749 3.297060 versicolor
74 6.268760 2.630621 versicolor
75 6.569283 1.767931 versicolor
76 7.376409 1.575341 versicolor
77 8.456851 1.726707 versicolor
78 9.372167 2.305879 versicolor
79 5.871143 2.931851 versicolor
80 2.242621 1.746196 versicolor
81 2.373290 2.304550 versicolor
82 2.174285 2.161862 versicolor
83 3.296379 2.057194 versicolor
84 8.559505 4.180703 versicolor
85 4.351523 3.790885 versicolor
86 6.254539 3.630555 versicolor
87 8.222644 1.732763 versicolor
88 5.693089 1.089601 versicolor
89 3.861217 2.855112 versicolor
90 2.883691 2.648004 versicolor
91 3.519009 3.300865 versicolor
92 6.352661 2.839296 versicolor
93 3.341238 2.093332 versicolor
94 1.310473 2.266729 versicolor
95 3.544698 2.882386 versicolor
96 4.147667 2.748773 versicolor
97 4.098212 2.762276 versicolor
98 5.786155 2.165470 versicolor
99 1.204406 2.147812 versicolor
100 3.726652 2.550643 versicolor
101 12.868885 6.006482 virginica
102 8.275202 4.992602 virginica
103 13.818242 4.538085 virginica
104 11.395916 3.733291 virginica
105 12.611549 4.518063 virginica
106 15.167288 4.580621 virginica
107 3.256931 4.343911 virginica
108 14.657778 4.221338 virginica
109 12.606503 3.429156 virginica
110 14.293539 5.431041 virginica
111 10.913678 4.848214 virginica
112 10.620091 3.985814 virginica
113 12.455521 4.586778 virginica
114 8.165304 5.279075 virginica
115 8.537106 5.643321 virginica
116 11.603757 5.419617 virginica
117 11.522072 3.952109 virginica
118 15.250025 5.271586 virginica
119 15.472077 4.396878 virginica
120 8.917063 4.108094 virginica
121 13.199716 5.045357 virginica
122 7.799535 5.271964 virginica
123 15.305558 4.422065 virginica
124 8.684753 3.689291 virginica
125 12.898437 4.948861 virginica
126 14.177381 4.339674 virginica
127 8.090627 3.742130 virginica
128 7.812402 4.082107 virginica
129 11.927399 4.059812 virginica
130 14.012217 3.959194 virginica
131 14.560938 4.206181 virginica
132 15.236393 5.268181 virginica
133 12.010499 4.206740 virginica
134 8.927838 3.385948 virginica
135 10.179020 3.447383 virginica
136 14.868648 4.698355 virginica
137 12.240744 5.918564 virginica
138 11.418754 3.982833 virginica
139 7.492590 4.141120 virginica
140 12.415297 4.801756 virginica
141 12.650368 5.203968 virginica
142 11.761565 5.179988 virginica
143 13.361707 5.127742 virginica
144 12.955958 5.557022 virginica
145 11.713405 5.048448 virginica
146 9.150078 4.010551 virginica
147 11.016824 4.559839 virginica
148 11.759284 5.917160 virginica
149 8.022603 4.638540 virginica
03
ggplot2绘图
>ggplot(data,aes(Y1,Y2,fill=Species))+geom_point(size=5.5,colour="black",alpha=0.6,shape=21)+scale_fill_manual(values=c("#00AFBB","#E7B800","blue"))
小结
Rtsne():给定输入对象之间的距离矩阵D(默认情况下是两个对象之间的欧氏距离),计算原始空间p_ij中的相似度评分,输入对象必须为矩阵!!
t-SNE的局限性:若原始数据本身具有很高的维度,是不可能完整映射到二或三维空间,而且在t-SNE图中,距离本身是没有意义的,涉及概率分布问题。
- 一个简单的完全信息动态博弈的解答
- Struts2远程代码执行漏洞S2-052 复现&防御方案
- CENTOS6.5安装CDH5.12.1(二)
- @ControllerAdvice + @ExceptionHandler 处理 全部Controller层异常
- 动态增加表单元素并获取元素的text和value提交
- SpringBoot常用配置
- Json格式String类型字符串转为Map工具类
- spring boot thymeleaf常用方式
- Java工具类- 跨域工具类
- python语言中的AOP利器:装饰器
- 如何使用supervisor管理你的应用
- Manjaro安装配置
- [Golang软件推荐] Frp内网穿透
- [Golang软件推荐] Golang通用连接池
- JavaScript 教程
- JavaScript 编辑工具
- JavaScript 与HTML
- JavaScript 与Java
- JavaScript 数据结构
- JavaScript 基本数据类型
- JavaScript 特殊数据类型
- JavaScript 运算符
- JavaScript typeof 运算符
- JavaScript 表达式
- JavaScript 类型转换
- JavaScript 基本语法
- JavaScript 注释
- Javascript 基本处理流程
- Javascript 选择结构
- Javascript if 语句
- Javascript if 语句的嵌套
- Javascript switch 语句
- Javascript 循环结构
- Javascript 循环结构实例
- Javascript 跳转语句
- Javascript 控制语句总结
- Javascript 函数介绍
- Javascript 函数的定义
- Javascript 函数调用
- Javascript 几种特殊的函数
- JavaScript 内置函数简介
- Javascript eval() 函数
- Javascript isFinite() 函数
- Javascript isNaN() 函数
- parseInt() 与 parseFloat()
- escape() 与 unescape()
- Javascript 字符串介绍
- Javascript length属性
- javascript 字符串函数
- Javascript 日期对象简介
- Javascript 日期对象用途
- Date 对象属性和方法
- Javascript 数组是什么
- Javascript 创建数组
- Javascript 数组赋值与取值
- Javascript 数组属性和方法
- jdbc连接oracle语法
- java实现数据库连接的工具类
- shell脚本快速入门之-----正则三剑客之一grep用法大全!!!
- 【网页特效】11 个文本输入和 6 个按钮操作 特效库
- shell脚本快速入门之-----正则三剑客之二sed用法大全!!!
- JSP中的Cookie
- 傅里叶变换
- shell脚本快速入门之-----shell脚本练习100例!!!
- java监听器
- shell脚本快速入门之-----函数
- shell脚本快速入门之-----循环(for、while、until)
- ThreadPoolExecutor系列三——ThreadPoolExecutor 源码解析
- shell脚本快速入门之-----数组
- JSTL
- shell脚本快速入门之-----正则三剑客之三awk用法大全!!!