GEO数据挖掘5

时间:2022-07-25
本文章向大家介绍GEO数据挖掘5,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

GEO数据挖掘5

sunqi

2020/7/13

GEO数据挖掘5

概述

GO和KEGG富集分析

KEGG全称 Kyoto Encyclopedia of Genes and Genomes,由日本京都大学生物信息学中心的Kanahisa 实验室于1995年建立根据基因组中的信息,原理是用计算机计算或者预测出比较复杂的细胞中的通路或者生物的复杂行为。数据库能够把基因及表达信息作为一个整体的网络进行研究,通俗点讲就是通过基因寻找通路

GO全称为gene ontology,由基因本体联合会(Gene Ontology Consortium)建立的数据库,数据库对基因和蛋白功能进行限定和描述

GEO数据挖掘离不来富集分析,单纯的差异表达基因不能说明什么问题,只有对基因根据现有知识做定义定位分类,这样才能在生物学上解释这个差异,也就是故事才能讲顺了

注释:GO和KEGG的具体作用不再赘述,等代码实现完成之后后续再学习理论知识

另外,KEGG和GO分析可以通过软件实现,具体参考官网

数据预处理

用到的数据集为差异分析后得到的数据集deg,详情见上章

rm(list = ls())
load(file = 'deg.Rdata')

## 设置差异阈值
logFC_t=1.5
deg$g=ifelse(deg$P.Value>0.05,'stable',
            ifelse( deg$logFC > logFC_t,'UP',
                    ifelse( deg$logFC < -logFC_t,'DOWN','stable') )
)
# 可以看到有167个下调和196个上调基因
table(deg$g)
##
##   DOWN stable     UP
##    167  18458    196
# 建立基因列
deg$symbol=rownames(deg)
library(ggplot2)
# 如果需要通过下述方式下载包
# BiocManager::install("clusterProfiler")
# BiocManager::install("enrichplot")
# install.packages("tibble")
library(clusterProfiler)# 富集包

library(org.Hs.eg.db)# 基因注释包
# bitr将基因symbol转换为ENTREZID,方便后续比较
df <- bitr(unique(deg$symbol), fromType = "SYMBOL",
           toType = c( "ENTREZID"),
           OrgDb = org.Hs.eg.db)
head(df)
##   SYMBOL ENTREZID
## 1   CD36      948
## 2  DUSP6     1848
## 3    DCT     1638
## 4  SPRY2    10253
## 5  MOXD1    26002
## 6   ETV4     2118
DEG=deg
head(DEG)
##           logFC   AveExpr         t      P.Value    adj.P.Val        B    g
## CD36   5.780170  7.370282  79.74600 1.231803e-16 2.318376e-12 26.74346   UP
## DUSP6 -4.212683  9.106625 -62.45995 1.832302e-15 1.347565e-11 24.99635 DOWN
## DCT    5.633027  8.763220  61.56738 2.147971e-15 1.347565e-11 24.88294   UP
## SPRY2 -3.801663  9.726468 -53.97054 9.191088e-15 4.324637e-11 23.79519 DOWN
## MOXD1  3.263063 10.171635  47.09629 4.129552e-14 1.325237e-10 22.58201   UP
## ETV4  -3.843247  9.667077 -46.99899 4.224762e-14 1.325237e-10 22.56297 DOWN
##       symbol
## CD36    CD36
## DUSP6  DUSP6
## DCT      DCT
## SPRY2  SPRY2
## MOXD1  MOXD1
## ETV4    ETV4
# 通过基因名将转换后的enterz id 加入到差异比较结果中
DEG=merge(DEG,df,by.y='SYMBOL',by.x='symbol')
# 保存
# save(DEG,file = 'anno_DEG.Rdata')

# 提取上调和下调基因
gene_up= DEG[DEG$g == 'UP','ENTREZID']
gene_down=DEG[DEG$g == 'DOWN','ENTREZID']
# 合并为差异数据gene_diff
gene_diff=c(gene_up,gene_down)
# 确保所有entrez id为字符串
gene_all=as.character(DEG[ ,'ENTREZID'] )
# 获得差异比较的数值
geneList=DEG$logFC
# 添加entrez id
names(geneList)=DEG$ENTREZID
# 按照差异大小,从大到小排列
geneList=sort(geneList,decreasing = T)

KEGG 分析

kegg普通富集分析 Over-Representation Analysis

# 上调富集分析,参数可以自己指定,特别是p值
kk.up <- enrichKEGG(gene         = gene_up,
                    organism     = 'hsa',
                    universe     = gene_all,
                    pvalueCutoff = 0.9,
                    qvalueCutoff =0.9)
head(kk.up)[,1:6]
##                ID                                  Description GeneRatio
## hsa00140 hsa00140                 Steroid hormone biosynthesis      3/82
## hsa04512 hsa04512                     ECM-receptor interaction      4/82
## hsa00982 hsa00982            Drug metabolism - cytochrome P450      3/82
## hsa04620 hsa04620         Toll-like receptor signaling pathway      4/82
## hsa00980 hsa00980 Metabolism of xenobiotics by cytochrome P450      3/82
## hsa04390 hsa04390                      Hippo signaling pathway      5/82
##           BgRatio     pvalue  p.adjust
## hsa00140  45/7299 0.01381704 0.6462342
## hsa04512  85/7299 0.01505774 0.6462342
## hsa00982  51/7299 0.01932907 0.6462342
## hsa04620  92/7299 0.01959465 0.6462342
## hsa00980  55/7299 0.02358691 0.6462342
## hsa04390 151/7299 0.02707377 0.6462342
# 绘制富集分析的图
dotplot(kk.up )
# ggsave('kk.up.dotplot.png')
# 下调富集分析,参数需要自己指定
kk.down <- enrichKEGG(gene         =  gene_down,
                      organism     = 'hsa',
                      universe     = gene_all,
                      pvalueCutoff = 0.9,
                      qvalueCutoff =0.9)
head(kk.down)[,1:6]
##                ID                  Description GeneRatio  BgRatio       pvalue
## hsa04110 hsa04110                   Cell cycle     17/83 122/7299 1.615131e-14
## hsa03030 hsa03030              DNA replication      8/83  36/7299 4.636777e-09
## hsa05322 hsa05322 Systemic lupus erythematosus      9/83 107/7299 2.970025e-06
## hsa03440 hsa03440     Homologous recombination      6/83  38/7299 3.718118e-06
## hsa03460 hsa03460       Fanconi anemia pathway      6/83  48/7299 1.509512e-05
## hsa05206 hsa05206          MicroRNAs in cancer     12/83 252/7299 2.414870e-05
##              p.adjust
## hsa04110 2.261183e-12
## hsa03030 3.245744e-07
## hsa05322 1.301341e-04
## hsa03440 1.301341e-04
## hsa03460 4.226633e-04
## hsa05206 5.634697e-04
# 绘制图
dotplot(kk.down )
# ggsave('kk.down.dotplot.png')
## 上调和下调的富集
kk.diff <- enrichKEGG(gene         = gene_diff,
                      organism     = 'hsa',
                      pvalueCutoff = 0.05)
head(kk.diff)[,1:6]
##                ID                             Description GeneRatio  BgRatio
## hsa04110 hsa04110                              Cell cycle    17/165 124/8034
## hsa03030 hsa03030                         DNA replication     8/165  36/8034
## hsa03440 hsa03440                Homologous recombination     6/165  41/8034
## hsa05202 hsa05202 Transcriptional misregulation in cancer    12/165 192/8034
## hsa03460 hsa03460                  Fanconi anemia pathway     6/165  54/8034
##                pvalue     p.adjust
## hsa04110 4.660099e-10 1.011241e-07
## hsa03030 4.954487e-07 5.375619e-05
## hsa03440 1.698195e-04 1.228361e-02
## hsa05202 5.701353e-04 3.092984e-02
## hsa03460 7.827963e-04 3.397336e-02
# 绘制图片
dotplot(kk.diff )
# ggsave('kk.diff.dotplot.png')


browseKEGG(kk.up, 'hsa04640')

# 转换为数据框
kegg_diff_dt <- as.data.frame(kk.diff)
kegg_down_dt <- as.data.frame(kk.down)
kegg_up_dt <- as.data.frame(kk.up)

# 绘制条图
down_kegg<-kegg_down_dt[kegg_down_dt$pvalue<0.05,]
down_kegg$group=-1
up_kegg<-kegg_up_dt[kegg_up_dt$pvalue<0.05,]
up_kegg$group=1
# 绘图函数
kegg_plot <- function(up_kegg,down_kegg){
  dat=rbind(up_kegg,down_kegg)
  colnames(dat)
  dat$pvalue = -log10(dat$pvalue)
  dat$pvalue=dat$pvalue*dat$group
  
  dat=dat[order(dat$pvalue,decreasing = F),]
  
  g_kegg<- ggplot(dat, aes(x=reorder(Description,order(pvalue, decreasing = F)), y=pvalue, fill=group)) +
    geom_bar(stat="identity") +
    scale_fill_gradient(low="blue",high="red",guide = FALSE) +
    scale_x_discrete(name ="Pathway names") +
    scale_y_continuous(name ="log10P-value") +
    coord_flip() + theme_bw()+theme(plot.title = element_text(hjust = 0.5))+
    ggtitle("Pathway Enrichment")
}


g_kegg=kegg_plot(up_kegg,down_kegg)
print(g_kegg)
# ggsave(g_kegg,filename = 'kegg_up_down.png')

kegg GSEA分析

kk_gse <- gseKEGG(geneList     = geneList,
                  organism     = 'hsa',
                  nPerm        = 1000,
                  minGSSize    = 120,
                  pvalueCutoff = 0.9,
                  verbose      = FALSE)
gseaplot(kk_gse, geneSetID = rownames(kk_gse[1,]))
# 结果解释,备查https://blog.csdn.net/weixin_43569478/article/details/83745105
# 结果解读需要重新学习
down_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore < 0,];down_kegg$group=-1
up_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore > 0,];up_kegg$group=1

g_kegg=kegg_plot(up_kegg,down_kegg)
print(g_kegg)
# ggsave(g_kegg,filename = 'kegg_up_down_gsea.png')

GO database analysis

电脑配置不行,计算较慢,以后想办法连接服务器算

g_list=list(gene_up=gene_up,
            gene_down=gene_down,
            gene_diff=gene_diff)

# 通过lapply函数,同时实现三组基因的GO分析
go_enrich_results <- lapply( g_list , function(gene) {
  lapply( c('BP','MF','CC') , function(ont) {
    cat(paste('Now process ',ont ))
    ego <- enrichGO(gene          = gene,
                    universe      = gene_all,
                    OrgDb         = org.Hs.eg.db,
                    ont           = ont ,
                    pAdjustMethod = "BH",
                    pvalueCutoff  = 0.99,
                    qvalueCutoff  = 0.99,
                    readable      = TRUE)
    return(ego)
  })
})
## Now process  BPNow process  MFNow process  CCNow process  BPNow process  MFNow process  CCNow process  BPNow process  MFNow process  CC
# 保存结果,下次不算了
save(go_enrich_results,file = 'go_enrich_results.Rdata')
  


# 导入go分析的数据集
load(file = 'go_enrich_results.Rdata')

n1= c('gene_up','gene_down','gene_diff')
n2= c('BP','MF','CC')

# 通过循环绘制气泡图
for (i in 1:3){
  for (j in 1:3){
    fn=paste0('dotplot_',n1[i],'_',n2[j],'.png')
    cat(paste0(fn,'n'))
    png(fn,res=150,width = 1080)
    print( dotplot(go_enrich_results[[i]][[j]] ))
    dev.off()
  }
}
## dotplot_gene_up_BP.png
## dotplot_gene_up_MF.png
## dotplot_gene_up_CC.png
## dotplot_gene_down_BP.png
## dotplot_gene_down_MF.png
## dotplot_gene_down_CC.png
## dotplot_gene_diff_BP.png
## dotplot_gene_diff_MF.png
## dotplot_gene_diff_CC.png
# 结果解读(略)

结束语

从这里开始,有点力不从心的感觉,生物学背景少,结果解读有点困难,不过这样整一遍,后面针对性的再学,效率也高,另外电脑需要个cpu好点的电脑,不然等的太累。

love&peace