二叉树由浅至深(下)

时间:2022-07-24
本文章向大家介绍二叉树由浅至深(下),主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

5. 二叉搜索树

5.1 二叉搜索树概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树
int a [] = {5,3,4,1,7,8,2,6,0,9};

5.2 二叉搜索树操作

5.2.1 二叉搜索树的查找

5.2.2 二叉搜索树的插入

插入的具体过程如下:

  • 树为空,则直接插入
  • 树不空,按二叉搜索树性质查找插入位置,插入新节点
  • 二叉搜索树的删除 首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情况:
    1. 要删除的结点无孩子结点
    2. 要删除的结点只有左孩子结点
    3. 要删除的结点只有右孩子结点
    4. 要删除的结点有左、右孩子结点

看起来有待删除节点有4种情况,实际情况a可以与情况b或者c合并起来,因此真正的删除过程如下:

  • 情况b:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点
  • 情况c:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点
  • 情况d:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题

5.3 二叉搜索树的实现

#include<iostream>
using namespace std;

template<class T>
struct BSTNode
{
	BSTNode(const T& val=T())
	:_left(nullptr)
	, _right(nullptr)
	, _data(val)
	{}
	BSTNode<T>* _left;
	BSTNode<T>* _right;
	T _data;
};

template<class T>
class BSTree{
	typedef BSTNode<T> Node;
	typedef Node* PNode;
public:
	BSTree()
		:_pRoot(nullptr)
	{}
	~BSTree()
	{
		_pRoot = nullptr;
	}

	修改
	PNode Find(const T& data){
		if (_pRoot == data)
			return _pRoot;
		else if (_pRoot == nullptr)
			return nullptr;
		else
		{
			if (_pRoot->_data > data)
				Find(_pRoot->_left);
			else
			{
				Find(_pRoot->_data>_right);
			}
		}
		return nullptr;
	}


	bool Insert(const T& data)
	{
		if (_pRoot == nullptr)
		{
			_pRoot = new Node(data);
			return true;
		}
		PNode cur = _pRoot;
		PNode parent = nullptr;
		while (cur)
		{
			parent = cur;
			if (cur->_data > data)
				cur = cur->_left;
			else if (cur->_data < data)
				cur = cur->_right;
			else
			{
				return false;
			}
		}
		//插入元素
		cur = new Node(data); 
		if (parent->_data>cur->_data)
			parent->_left = cur;
		else
			parent->_right = cur;
		return true;
	}

	bool Erase(const T& data)
	{
		if (_pRoot == nullptr)
			return false;
		PNode cur = _pRoot;
		PNode parent = nullptr;
		while (cur)
		{
			if (cur->_data == data)
				break;
			else if (cur->_data > data)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				parent = cur;
				cur = cur->_right;
			}
		}

		//不在树中
		if (cur == nullptr)
			return false;

		if (!_pRoot->_right|| !_pRoot->_left) {
			_pRoot = _pRoot->_left ? _pRoot->_left : _pRoot->_right;
		}
		else {
			PNode cur = _pRoot->_right;
			while (cur->_left) {
				cur = cur->_left;
			}
			_pRoot->val = cur->val;//值替换,很巧妙
			_pRoot = _pRoot->_right;
			_pRoot->_right = deleteNode(cur->val);
		}
		return true;
	}
private:
	PNode _pRoot;
};

5.4 二叉搜索树的应用

  1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。 比如:给一个单词word,判断该单词是否拼写正确,具体方式如下: 以单词集合中的每个单词作为key,构建一棵二叉搜索树在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
  2. KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见:比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是<word, count>就构成一种键值对。

比如:实现一个简单的英汉词典dict,可以通过英文找到与其对应的中文,具体实现方式如下:

  • <单词,中文含义>为键值对构造二叉搜索树,注意:二叉搜索树需要比较,键值对比较时只比较Key
  • 查询英文单词时,只需给出英文单词,就可快速找到与其对应的key

5.5 二叉搜索树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。 对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。 但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:logN 最差情况下,二叉搜索树退化为单支树,其平均比较次数为:N/2