pytorch实现的transformer代码分析

时间:2022-07-23
本文章向大家介绍pytorch实现的transformer代码分析,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

代码来源:https://github.com/graykode/nlp-tutorial/blob/master/5-1.Transformer/Transformer-Torch.py

一些基础变量和参数:

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import matplotlib.pyplot as plt

dtype = torch.FloatTensor
# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# P: Symbol that will fill in blank sequence if current batch data size is short than time steps
sentences = ['ich mochte ein bier P', 'S i want a beer', 'i want a beer E']

# Transformer Parameters
# Padding Should be Zero
src_vocab = {'P' : 0, 'ich' : 1, 'mochte' : 2, 'ein' : 3, 'bier' : 4}
src_vocab_size = len(src_vocab)

tgt_vocab = {'P' : 0, 'i' : 1, 'want' : 2, 'a' : 3, 'beer' : 4, 'S' : 5, 'E' : 6}
number_dict = {i: w for i, w in enumerate(tgt_vocab)}
tgt_vocab_size = len(tgt_vocab)

src_len = 5
tgt_len = 5

d_model = 512  # Embedding Size
d_ff = 2048 # FeedForward dimension
d_k = d_v = 64  # dimension of K(=Q), V
n_layers = 6  # number of Encoder of Decoder Layer
n_heads = 8  # number of heads in Multi-Head Attention

函数一:将句子转换成向量

def make_batch(sentences):
    input_batch = [[src_vocab[n] for n in sentences[0].split()]]
    output_batch = [[tgt_vocab[n] for n in sentences[1].split()]]
    target_batch = [[tgt_vocab[n] for n in sentences[2].split()]]
    return Variable(torch.LongTensor(input_batch)), Variable(torch.LongTensor(output_batch)), Variable(torch.LongTensor(target_batch))

input_batch,output_batch,target_batch=make_batch(sentences)

input_batch,output_batch,target_batch

输出:

(tensor([[1, 2, 3, 4, 0]]),
 tensor([[5, 1, 2, 3, 4]]),
 tensor([[1, 2, 3, 4, 6]]))

函数二:位置嵌入

def get_sinusoid_encoding_table(n_position, d_model):
    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_model)
    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_model)]

    sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1
    return torch.FloatTensor(sinusoid_table)

sinusoid_table=get_sinusoid_encoding_table(src_len+1,d_model)

sinusoid_table.shape

torch.Size([6, 512])

sinusoid_table

tensor([[ 0.0000e+00,  1.0000e+00,  0.0000e+00,  ...,  1.0000e+00,
          0.0000e+00,  1.0000e+00],
        [ 8.4147e-01,  5.4030e-01,  8.2186e-01,  ...,  1.0000e+00,
          1.0366e-04,  1.0000e+00],
        [ 9.0930e-01, -4.1615e-01,  9.3641e-01,  ...,  1.0000e+00,
          2.0733e-04,  1.0000e+00],
        [ 1.4112e-01, -9.8999e-01,  2.4509e-01,  ...,  1.0000e+00,
          3.1099e-04,  1.0000e+00],
        [-7.5680e-01, -6.5364e-01, -6.5717e-01,  ...,  1.0000e+00,
          4.1465e-04,  1.0000e+00],
        [-9.5892e-01,  2.8366e-01, -9.9385e-01,  ...,  1.0000e+00,
          5.1832e-04,  1.0000e+00]])

函数三:mask机制

def get_attn_pad_mask(seq_q, seq_k):
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # batch_size x 1 x len_k(=len_q), one is masking
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # batch_size x len_q x len_k

函数四:

def get_attn_subsequent_mask(seq):
    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
    subsequent_mask = np.triu(np.ones(attn_shape), k=1)
    subsequent_mask = torch.from_numpy(subsequent_mask).byte()
    return subsequent_mask

不同的层:

class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
        scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V)
        return context, attn

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads)
        self.W_K = nn.Linear(d_model, d_k * n_heads)
        self.W_V = nn.Linear(d_model, d_v * n_heads)
    def forward(self, Q, K, V, attn_mask):
        # q: [batch_size x len_q x d_model], k: [batch_size x len_k x d_model], v: [batch_size x len_k x d_model]
        residual, batch_size = Q, Q.size(0)
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # q_s: [batch_size x n_heads x len_q x d_k]
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # k_s: [batch_size x n_heads x len_k x d_k]
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # v_s: [batch_size x n_heads x len_k x d_v]

        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]

        # context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
        output = nn.Linear(n_heads * d_v, d_model)(context)
        return nn.LayerNorm(d_model)(output + residual), attn # output: [batch_size x len_q x d_model]

class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)

    def forward(self, inputs):
        residual = inputs # inputs : [batch_size, len_q, d_model]
        output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
        output = self.conv2(output).transpose(1, 2)
        return nn.LayerNorm(d_model)(output + residual)

class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
        return enc_outputs, attn

class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()
        self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
        dec_outputs = self.pos_ffn(dec_outputs)
        return dec_outputs, dec_self_attn, dec_enc_attn

class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)
        self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(src_len+1, d_model),freeze=True)
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

    def forward(self, enc_inputs): # enc_inputs : [batch_size x source_len]
        enc_outputs = self.src_emb(enc_inputs) + self.pos_emb(torch.LongTensor([[1,2,3,4,0]]))
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
        enc_self_attns = []
        for layer in self.layers:
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
        self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(tgt_len+1, d_model),freeze=True)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])

    def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len]
        dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(torch.LongTensor([[5,1,2,3,4]]))
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)
        dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)

        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)

        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        return dec_outputs, dec_self_attns, dec_enc_attns

class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()
        self.decoder = Decoder()
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
    def forward(self, enc_inputs, dec_inputs):
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
        dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

从Transformer类中慢慢看过来:

model = Transformer()

初始化的时候:构建编码器、解码器、前馈神经网络。

在前向传播的过程中:

编码器输入(源语言)--》编码器输出、编码器自注意力

解码器输入(目标语言、源语言、编码器输出)--》解码器输出、解码器自注意力、解码-编码注意力

前馈神经网络输入(解码器输出)--》dec_logits

分别打印一下每个变量的形状:

model=Transformer()
enc_inputs, dec_inputs, target_batch = make_batch(sentences)
outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
enc_inputs的形状是: torch.Size([1, 5])
enc_inputs的形状是: torch.Size([1, 5])
enc_outputs的形状是: torch.Size([1, 5, 512])
enc_self_attns的形状是: (6,)
dec_outputs的形状是: torch.Size([1, 5, 512])
dec_self_attns的形状是: (6,)
dec_enc_attns的形状是: (6,)

其中的细节再看了。

最后是训练和预测:

model = Transformer()

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

def showgraph(attn):
    attn = attn[-1].squeeze(0)[0]
    attn = attn.squeeze(0).data.numpy()
    fig = plt.figure(figsize=(n_heads, n_heads)) # [n_heads, n_heads]
    ax = fig.add_subplot(1, 1, 1)
    ax.matshow(attn, cmap='viridis')
    ax.set_xticklabels(['']+sentences[0].split(), fontdict={'fontsize': 14}, rotation=90)
    ax.set_yticklabels(['']+sentences[2].split(), fontdict={'fontsize': 14})
    plt.show()

for epoch in range(20):
    optimizer.zero_grad()
    enc_inputs, dec_inputs, target_batch = make_batch(sentences)
    outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
    loss = criterion(outputs, target_batch.contiguous().view(-1))
    print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
    loss.backward()
    optimizer.step()

# Test
predict, _, _, _ = model(enc_inputs, dec_inputs)
predict = predict.data.max(1, keepdim=True)[1]
print(sentences[0], '->', [number_dict[n.item()] for n in predict.squeeze()])

print('first head of last state enc_self_attns')
showgraph(enc_self_attns)

print('first head of last state dec_self_attns')
showgraph(dec_self_attns)

print('first head of last state dec_enc_attns')
showgraph(dec_enc_attns)

结果:

Epoch: 0001 cost = 2.058749
Epoch: 0002 cost = 0.096908
Epoch: 0003 cost = 0.034705
Epoch: 0004 cost = 0.045140
Epoch: 0005 cost = 0.005356
Epoch: 0006 cost = 0.000624
Epoch: 0007 cost = 0.004379
Epoch: 0008 cost = 0.001091
Epoch: 0009 cost = 0.000852
Epoch: 0010 cost = 0.002038
Epoch: 0011 cost = 0.000404
Epoch: 0012 cost = 0.000122
Epoch: 0013 cost = 0.000275
Epoch: 0014 cost = 0.000174
Epoch: 0015 cost = 0.000479
Epoch: 0016 cost = 0.003401
Epoch: 0017 cost = 0.000108
Epoch: 0018 cost = 0.000068
Epoch: 0019 cost = 0.000033
Epoch: 0020 cost = 0.000050
ich mochte ein bier P -> ['i', 'want', 'a', 'beer', 'E']
first head of last state enc_self_attns
first head of last state dec_self_attns
first head of last state dec_enc_attns