模型集成 | 14款常规机器学习 + 加权平均模型融合

时间:2022-06-22
本文章向大家介绍模型集成 | 14款常规机器学习 + 加权平均模型融合,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

模型融合的方法很多,Voting、Averaging、Bagging 、Boosting、 Stacking,那么一些kaggle比赛中选手会选用各种方法进行融合,其中岭回归就是一类轻巧且非常有效的方法,当然现在还有很多更有逼格的方法。本文是受快照集成的启发,把titu1994/Snapshot-Ensembles项目中,比较有意思的加权平均集成的内容抽取出来,单独应用。

code更新于:mattzheng/WA-ModelEnsemble

1、 快照集成

因为受其启发,所以在这提一下,快照集成是一种无需额外训练代价的多神经网络集成方法。 通过使单个神经网络沿它的优化路径进行多个局部最小化,保存模型参数。 利用多重学习速率退火循环实现了重复的快速收敛。

1.1 比较有意思的做法

作者在训练相同网络时使用权重快照,在训练结束后用这些结构相同但权重不同的模型创建一个集成模型。这种方法使测试集效果提升,而且这也是一种非常简单的方法,因为你只需要训练一次模型,将每一时刻的权重保存下来就可以了。

也就是,同一款模型,在学习率稍微调高,训练中得到的不同阶段的模型文件都保存并拿来做最后的模型融合

长学习率循环的思想 在于能够在权重空间找到足够多不同的模型。如果模型相似度太高,集合中各网络的预测就会太接近,而体现不出集成带来的好处。

1.2 权重的解决方案

对于一个给定的网络结构,每一种不同的权重组合将得到不同的模型。因为所有模型结构都有无限多种权重组合,所以将有无限多种组合方法。

训练神经网络的目标是找到一个特别的解决方案(权重空间中的点),从而使训练集和测试集上的损失函数的值达到很小。

1.3 相关实现:cifar100 图像分类任务

可参考项目:titu1994/Snapshot-Ensembles 该项目用keras1.1 做了cifar_10、cifar_100两套练习,使用的是比较有意思的图像框架: Wide Residual Net (16-4)。作者已经预先给定了5款训练快照,拿着5套模型的预测结果做模型集成,使使训练集和测试集上的损失函数的值达到很小。


2、 14款常规的机器学习模型

sklearn官方案例中就有非常多的机器学习算法示例,本着实验的精神笔者借鉴了其中几个。本案例中使用到的算法主要分为两套:

  • 第一套,8款比较常见的机器学习算法,"Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Neural Net", "AdaBoost", "Naive Bayes", "QDA‘’(参考:Classifier comparison
  • 第二套,偏向组合方案,RandomTreesEmbedding, RandomForestClassifier, GradientBoostingClassifier、LogisticRegression(参考:Feature transformations with ensembles of trees

机器学习模型除了预测还有重要的特征筛选的功能,不同的模型也有不同的重要性输出:

2.1 特征选择

在本次10+机器学习案例之中,可以看到,可以输出重要性的模型有:

  • 随机森林rf.feature_importances_
  • GBTgrd.feature_importances_
  • Decision Tree decision.feature_importances_
  • AdaBoost AdaBoost.feature_importances_

可以计算系数的有:线性模型,lm.coef_ 、 SVM svm.coef_ Naive Bayes得到的是:NaiveBayes.sigma_解释为:variance of each feature per class

2.2 机器学习算法输出

算法输出主要有:重要指标(本案例中提到的是acc/recall)、ROC值的计算与plot、校准曲线(Calibration curves)

该图为校准曲线(Calibration curves),Calibration curves may also be referred to as reliability diagrams. 是一种算法可靠性检验的方式。 .


3、optimize 权重空间优化

主要是从titu1994/Snapshot-Ensembles抽取出来的。简单看看逻辑:

3.1 简述权重空间优化逻辑

3.1.1 先定义loss函数:
# Create the loss metric 
def log_loss_func(weights):
    ''' scipy minimize will pass the weights as a numpy array '''
    final_prediction = np.zeros((sample_N, nb_classes), dtype='float32')

    for weight, prediction in zip(weights, preds):
        final_prediction += weight * prediction

    return log_loss(testY_cat, final_prediction)

testY_cat为正确预测标签, final_prediction为多款模型预测概率组合。

3.1.2 迭代策略
minimize(log_loss_func, prediction_weights, method='SLSQP', bounds=bounds, constraints=constraints)

SciPy的optimize模块提供了许多数值优化算法,minimize就是其中一种。 其中:

  • log_loss_func,loss函数
  • prediction_weights,array,(6,)
  • method,很多:SLSQP、Nelder-Mead、Powell、CG、BFGS等
  • bounds,代表x的每个维度对应的界限,如果只有一维,也要写成bounds= ((0, None), )
  • constraints,常数项,Constraints definition (only for COBYLA, SLSQP and trust-constr)

3.2 实践

具体code笔者会上传至笔者的github之上了。 步骤为:

  • 1、随机准备数据make_classification
  • 2、两套模型的训练与基本信息准备
  • 3、观察14套模型的准确率与召回率
  • 4、刻画14套模型的calibration plots校准曲线
  • 5、14套模型的重要性输出
  • 6、14套模型的ROC值计算与plot
  • 7、加权模型融合数据准备
  • 8、基准优化策略:14套模型融合——平均
  • 9、加权平均优化策略:14套模型融合——加权平均优化

一些细节了解:

3.2.7 加权模型融合数据准备

# 集成数据准备
preds_dict = {}
for pred_tmp,name in [[predictEight[n]['prob_pos'],n] for n in names] + [(y_pred_lm,'LM'),
                       (y_pred_rt,'RT + LM'),
                       (y_pred_rf_lm,'RF + LM'),
                       (y_pred_grd_lm,'GBT + LM'),
                       (y_pred_grd,'GBT'),
                       (y_pred_rf,'RF')]:
    preds_dict[name] = np.array([1 - pred_tmp , pred_tmp]).T

# 参数准备
preds = list(preds_dict.values())
models_filenames = list(preds_dict.keys())
sample_N,nb_classes = preds[0].shape
testY = y_test.reshape((len(y_test),1))  # 真实Label (2000,1)
testY_cat = np.array([1 - y_test ,y_test]).T # (2000,2)   

models_filenames 代表模型的名字;sample_N样本个数;nb_classes 分类个数(此时为2分类);testY 真实label;testY_cat 基于真实Label简单处理。

3.2.8 基准优化策略:14套模型融合——平均

def calculate_weighted_accuracy(prediction_weights):
    weighted_predictions = np.zeros((sample_N, nb_classes), dtype='float32')
    for weight, prediction in zip(prediction_weights, preds):
        weighted_predictions += weight * prediction
    yPred = np.argmax(weighted_predictions, axis=1)
    yTrue = testY
    accuracy = metrics.accuracy_score(yTrue, yPred) * 100
    recall = recall_score(yTrue, yPred)
    print("Accuracy : ", accuracy)
    print("Recall : ", recall)

# 模型集成:无权重
    # 无权重则代表权重为平均值
prediction_weights = [1. / len(models_filenames)] * len(models_filenames)
calculate_weighted_accuracy(prediction_weights)
>>> Accuracy :  79.7
>>> Recall :  0.7043390514631686

对14套模型,平均权重并进行加权。可以看到结论非常差。

3.2.9 加权平均优化策略:14套模型融合——加权平均优化

def MinimiseOptimize(preds,models_filenames,nb_classes,sample_N,testY,NUM_TESTS = 20):
    best_acc = 0.0
    best_weights = None
    # Parameters for optimization
    constraints = ({'type': 'eq', 'fun':lambda w: 1 - sum(w)})
    bounds = [(0, 1)] * len(preds)

    # Check for NUM_TESTS times
    for iteration in range(NUM_TESTS):  # NUM_TESTS,迭代次数为25
        # Random initialization of weights
        prediction_weights = np.random.random(len(models_filenames))

        # Minimise the loss 
        result = minimize(log_loss_func, prediction_weights, method='SLSQP', bounds=bounds, constraints=constraints)

        weights = result['x']
        weighted_predictions = np.zeros((sample_N, nb_classes), dtype='float32')

        # Calculate weighted predictions
        for weight, prediction in zip(weights, preds):
            weighted_predictions += weight * prediction

        yPred = np.argmax(weighted_predictions, axis=1)
        yTrue = testY

        # Calculate weight prediction accuracy
        accuracy = metrics.accuracy_score(yTrue, yPred) * 100
        recall = recall_score(yTrue, yPred)

        print('n ------- Iteration : %d  - acc: %s  - rec:%s -------  '%((iteration + 1),accuracy,recall))
        print('    Best Ensemble Weights: n',result['x'])

        # Save current best weights 
        if accuracy > best_acc:
            best_acc = accuracy
            best_weights = weights
    return best_acc,best_weights

# 模型集成:附权重
best_acc,best_weights = MinimiseOptimize(preds,models_filenames,nb_classes,sample_N,testY,NUM_TESTS = 20)

>>> Best Accuracy :  90.4
>>> Best Weights :  [1.57919854e-02 2.25437178e-02 1.60078948e-01 1.37993631e-01
     1.60363024e-03 1.91105368e-01 2.34578651e-02 1.24696769e-02
     3.18793907e-03 1.29753377e-02 1.12151337e-01 7.62845967e-04
     3.05643629e-01 2.34089531e-04]
>>> Accuracy :  90.4
>>> Recall :  0.9112008072653885

在迭代了20次之后,通过加权求得的综合预测水平,要高于平均水平很多。不过,跟一些比较出众的机器学习模型差异不大。