线性表(ArrayList 和 LinkedList源码分析)

时间:2022-06-10
本文章向大家介绍线性表(ArrayList 和 LinkedList源码分析),主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

线性表(linear list) 是数据结构的一种,一个线性表是n个具有相同特性的数据元素的有限序列。

  • 线性表的相邻元素之间存在着序偶关系。a1a2的前驱,ai+1ai的后继,a1没有前驱,an没有后继
  • n为线性表的长度 ,若n==0时,线性表为空表
  • 存储结构:1. 数序存储结构 2. 链式存储结构

(图片均来源于网络)


顺序存储结构

特点: 存储位置连续,可以很方便计算各个元素的地址如每个元素占C个存储单元,那么Loc(An) = Loc(An-1) + C -> Loc(An) = Loc(A1)+(i-1)*C

优点:查询很快
缺点:插入和删除效率慢

JAVA里面基本的顺序存储结构线性表数组ArrayList是基于它来完成对象的存储,来分析一下ArrayList(Android里面的)的源码

初始化过程:

    /**
     * Default initial capacity.
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * Shared empty array instance used for empty instances.
     */
    private static final Object[] EMPTY_ELEMENTDATA = {};

    /**
     * The array buffer into which the elements of the ArrayList are stored.
     * The capacity of the ArrayList is the length of this array buffer. Any
     * empty ArrayList with elementData == EMPTY_ELEMENTDATA will be expanded to
     * DEFAULT_CAPACITY when the first element is added.
     *
     * Package private to allow access from java.util.Collections.
     */
    transient Object[] elementData;

    /**
     * The size of the ArrayList (the number of elements it contains).
     *
     * @serial
     */
    private int size;

    /**
     * Constructs an empty list with the specified initial capacity.
     *
     * @param  initialCapacity  the initial capacity of the list
     * @throws IllegalArgumentException if the specified initial capacity
     *         is negative
     */
    public ArrayList(int initialCapacity) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        this.elementData = new Object[initialCapacity];
    }

    /**
     * Constructs an empty list with an initial capacity of ten.
     */
    public ArrayList() {
        super();
        this.elementData = EMPTY_ELEMENTDATA;
    }

    /**
     * Constructs a list containing the elements of the specified
     * collection, in the order they are returned by the collection's
     * iterator.
     *
     * @param c the collection whose elements are to be placed into this list
     * @throws NullPointerException if the specified collection is null
     */
    public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        size = elementData.length;
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    }

```  
从初始化的过程可以很明显的看出来,就是对内部的一个`数组`对象`elementData `进行初始化。

`add`过程:
```java
/**
     * Appends the specified element to the end of this list.
     *
     * @param e element to be appended to this list
     * @return <tt>true</tt> (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }

private void ensureCapacityInternal(int minCapacity) {
        if (elementData == EMPTY_ELEMENTDATA) {
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }

        ensureExplicitCapacity(minCapacity);
    }

    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;

        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

 /**
     * The maximum size of array to allocate.
     * Some VMs reserve some header words in an array.
     * Attempts to allocate larger arrays may result in
     * OutOfMemoryError: Requested array size exceeds VM limit
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

 /**
     * Increases the capacity to ensure that it can hold at least the
     * number of elements specified by the minimum capacity argument.
     *
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

add()的时候先判断当前数据容量是否足够,如果不足够那么扩容,扩容的值等于当前数组长度右移一位,也就是x2,然后添加到指定位置即可。 addAll()也是同样的方式,在这就不贴代码,可以自行查看一下源码。

remove过程:

/**
    * Removes the element at the specified position in this list.
    * Shifts any subsequent elements to the left (subtracts one from their
    * indices).
    *
    * @param index the index of the element to be removed
    * @return the element that was removed from the list
    * @throws IndexOutOfBoundsException {@inheritDoc}
    */
   public E remove(int index) {
       if (index >= size)
           throw new IndexOutOfBoundsException(outOfBoundsMsg(index));

       modCount++;
       E oldValue = (E) elementData[index];

       int numMoved = size - index - 1;
       if (numMoved > 0)
           System.arraycopy(elementData, index+1, elementData, index,
                            numMoved);
       elementData[--size] = null; // clear to let GC do its work

       return oldValue;
   }

   /**
    * Removes the first occurrence of the specified element from this list,
    * if it is present.  If the list does not contain the element, it is
    * unchanged.  More formally, removes the element with the lowest index
    * <tt>i</tt> such that
    * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>
    * (if such an element exists).  Returns <tt>true</tt> if this list
    * contained the specified element (or equivalently, if this list
    * changed as a result of the call).
    *
    * @param o element to be removed from this list, if present
    * @return <tt>true</tt> if this list contained the specified element
    */
   public boolean remove(Object o) {
       if (o == null) {
           for (int index = 0; index < size; index++)
               if (elementData[index] == null) {
                   fastRemove(index);
                   return true;
               }
       } else {
           for (int index = 0; index < size; index++)
               if (o.equals(elementData[index])) {
                   fastRemove(index);
                   return true;
               }
       }
       return false;
   }

/*
    * Private remove method that skips bounds checking and does not
    * return the value removed.
    */
   private void fastRemove(int index) {
       modCount++;
       int numMoved = size - index - 1;
       if (numMoved > 0)
           System.arraycopy(elementData, index+1, elementData, index,
                            numMoved);
       elementData[--size] = null; // clear to let GC do its work
   }

remove过程就是得到对应的值的下标,然后将该下标之后的数据都向前移动一个坐标,最后一个赋值为null

set过程

/**
    * Replaces the element at the specified position in this list with
    * the specified element.
    *
    * @param index index of the element to replace
    * @param element element to be stored at the specified position
    * @return the element previously at the specified position
    * @throws IndexOutOfBoundsException {@inheritDoc}
    */
   public E set(int index, E element) {
       if (index >= size)
           throw new IndexOutOfBoundsException(outOfBoundsMsg(index));

       E oldValue = (E) elementData[index];
       elementData[index] = element;
       return oldValue;
   }

set()直接将其赋值即可

get过程:

/**
    * Returns the element at the specified position in this list.
    *
    * @param  index index of the element to return
    * @return the element at the specified position in this list
    * @throws IndexOutOfBoundsException {@inheritDoc}
    */
   public E get(int index) {
       if (index >= size)
           throw new IndexOutOfBoundsException(outOfBoundsMsg(index));

       return (E) elementData[index];
   }

get()就直接将数组里面值取出来即可。

从源码的角度我们更加的熟悉了顺序线性表的优缺点:查询很快,插入和删除效率慢。


链式存储结构

特点:用一组任意的存储单元存储线性表的数据元素,这组存储单元可以是连续的,也可以是不连续的。

优点:插入和删除效率高
缺点:查询效率低

插入和删除只需改变next指向的地址即可,所以增删效率比较高。

如上图那样,如果需要查找第9个元素,那么将要从第一个一直指向第九个,所以查找效率低。

链式存储结构又包含循环链表、双向循环链表、单向循环链表等。 单向循环链表就是上图那样的,一个指针对应下一个指针,直到结束,就如上面的那张图所示。 循环链表 : 将单链表中终端结点的指针端由空指针改为指向头结点,就使整个单链表形成一个环,这种头尾相连的单链表称为单循环链表,简称循环链表

双向循环链表: 双向循环链表是单向循环链表的每个结点中,再设置一个指向其前驱结点的指针域

LinkedList是一个双向循环链表,来看看LinkedList的源码

LinkedList里面有一个Node类,这个类就是用来确定上一个指针prev和下一个指针next

private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

add


/**
     * Appends the specified element to the end of this list.
     *
     * <p>This method is equivalent to {@link #addLast}.
     *
     * @param e element to be appended to this list
     * @return {@code true} (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
        linkLast(e);
        return true;
    }

/**
     * Inserts the specified element at the specified position in this list.
     * Shifts the element currently at that position (if any) and any
     * subsequent elements to the right (adds one to their indices).
     *
     * @param index index at which the specified element is to be inserted
     * @param element element to be inserted
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public void add(int index, E element) {
        checkPositionIndex(index);

        if (index == size)
            linkLast(element);
        else
            linkBefore(element, node(index));
    }

/**
     * Links e as last element.
     */
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

 /**
     * Links e as last element.
     */
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

/**
     * Inserts element e before non-null Node succ.
     */
    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }

/**
     * Returns the (non-null) Node at the specified element index.
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

可以很直观的看出,add的时候,将new出一个新的Node对象newNode,然后把上一个Node对象lastnext指向它,然后又将last重新赋值。当指定位置add的时候,就需要先找个这个位置的Node对象,然后更改nextprev即可。在指定下标插入的话那么将先判断这个下标是在前半段还是后半段,如果是前半段的话就从头开始next遍历查找,如果是后半部的就从尾prev遍历。add操作如下图所示

remove:

/**
     * Removes the first occurrence of the specified element from this list,
     * if it is present.  If this list does not contain the element, it is
     * unchanged.  More formally, removes the element with the lowest index
     * {@code i} such that
     * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>
     * (if such an element exists).  Returns {@code true} if this list
     * contained the specified element (or equivalently, if this list
     * changed as a result of the call).
     *
     * @param o element to be removed from this list, if present
     * @return {@code true} if this list contained the specified element
     */
    public boolean remove(Object o) {
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

 /**
     * Unlinks non-null node x.
     */
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }


/**
     * Removes the element at the specified position in this list.  Shifts any
     * subsequent elements to the left (subtracts one from their indices).
     * Returns the element that was removed from the list.
     *
     * @param index the index of the element to be removed
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }

add差不多,找出相应的Node对象,然后重新对前后的Node重新进行指向即可。

remove主要操作所下图所示

get:

/**
     * Returns the element at the specified position in this list.
     *
     * @param index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }

 /**
     * Returns the (non-null) Node at the specified element index.
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

判断这个下标是在前半段还是后半段,如果是前半段的话就从头开始next遍历查找,如果是后半部的就从尾prev遍历。

set:

/**
     * Replaces the element at the specified position in this list with the
     * specified element.
     *
     * @param index index of the element to replace
     * @param element element to be stored at the specified position
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E set(int index, E element) {
        checkElementIndex(index);
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }

先查找Node,然后重新赋值即可。


水平有限,文中有什么不对或者有什么建议希望大家能够指出,谢谢!