ROS(indigo)RRT路径规划

时间:2022-06-17
本文章向大家介绍ROS(indigo)RRT路径规划,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

源码地址:https://github.com/nalin1096/path_planning

路径规划

具体使用案例,参考:ROS功能包http://blog.csdn.net/zhangrelay/article/details/76850690

使用ROS实现了基于RRT路径规划算法。

发行版 - indigo 

算法在有一个障碍的环境找到优化的路径。算法可视化在RVIZ完成,代码是用C ++编写。 

包有两个可执行文件:

1 ros_node  2 env_node

RVIZ参数: 

1 Frame_id =“path_planner”  2 marker_topic =“path_planner_rrt” 

说明: 

  1. 打开终端,输入 
  2. $ roscore 
  3. 打开新的终端并转到catkin工作区:
  4. $ catkin_make 
  5. $ source ./devel/setup.bash 
  6. $ rosrun path_planning env_node
  7. 打开新的终端 
  8. $ rosrun rviz rviz 
  9. 在RVIZ窗口,更改: 
  10. 在全局选项固定框架“path_planner” 
  11. 添加标记和标记改变主题,以“path_planner_rrt” 
  12. 打开新的终端 
  13. rosrun path_planning rrt_node

如果想修改环境environment,如下:

#include <ros/ros.h>
#include <visualization_msgs/Marker.h>
#include <path_planning/rrt.h>
#include <path_planning/obstacles.h>
#include <geometry_msgs/Point.h>

#include <iostream>
#include <cmath>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <vector>

using namespace rrt;

void initializeMarkers(visualization_msgs::Marker &boundary,
    visualization_msgs::Marker &obstacle)
{
    //init headers
	boundary.header.frame_id    = obstacle.header.frame_id    = "path_planner";
	boundary.header.stamp       = obstacle.header.stamp       = ros::Time::now();
	boundary.ns                 = obstacle.ns                 = "path_planner";
	boundary.action             = obstacle.action             = visualization_msgs::Marker::ADD;
	boundary.pose.orientation.w = obstacle.pose.orientation.w = 1.0;

    //setting id for each marker
    boundary.id    = 110;
	obstacle.id   = 111;

	//defining types
	boundary.type  = visualization_msgs::Marker::LINE_STRIP;
	obstacle.type = visualization_msgs::Marker::LINE_LIST;

	//setting scale
	boundary.scale.x = 1;
	obstacle.scale.x = 0.2;

    //assigning colors
	boundary.color.r = obstacle.color.r = 0.0f;
	boundary.color.g = obstacle.color.g = 0.0f;
	boundary.color.b = obstacle.color.b = 0.0f;

	boundary.color.a = obstacle.color.a = 1.0f;
}

vector<geometry_msgs::Point> initializeBoundary()
{
    vector<geometry_msgs::Point> bondArray;

    geometry_msgs::Point point;

    //first point
    point.x = 0;
    point.y = 0;
    point.z = 0;

    bondArray.push_back(point);

    //second point
    point.x = 0;
    point.y = 100;
    point.z = 0;

    bondArray.push_back(point);

    //third point
    point.x = 100;
    point.y = 100;
    point.z = 0;

    bondArray.push_back(point);

    //fourth point
    point.x = 100;
    point.y = 0;
    point.z = 0;
    bondArray.push_back(point);

    //first point again to complete the box
    point.x = 0;
    point.y = 0;
    point.z = 0;
    bondArray.push_back(point);

    return bondArray;
}

vector<geometry_msgs::Point> initializeObstacles()
{
    vector< vector<geometry_msgs::Point> > obstArray;

    vector<geometry_msgs::Point> obstaclesMarker;

    obstacles obst;

    obstArray = obst.getObstacleArray();

    for(int i=0; i<obstArray.size(); i++)
    {
        for(int j=1; j<5; j++)
        {
            obstaclesMarker.push_back(obstArray[i][j-1]);
            obstaclesMarker.push_back(obstArray[i][j]);
        }

    }
    return obstaclesMarker;
}

int main(int argc,char** argv)
{
    //initializing ROS
    ros::init(argc,argv,"env_node");
	ros::NodeHandle n;

	//defining Publisher
	ros::Publisher env_publisher = n.advertise<visualization_msgs::Marker>("path_planner_rrt",1);

	//defining markers
    visualization_msgs::Marker boundary;
    visualization_msgs::Marker obstacle;

    initializeMarkers(boundary, obstacle);

    //initializing rrtTree
    RRT myRRT(2.0,2.0);
    int goalX, goalY;
    goalX = goalY = 95;

    boundary.points = initializeBoundary();
    obstacle.points = initializeObstacles();

    env_publisher.publish(boundary);
    env_publisher.publish(obstacle);

    while(ros::ok())
    {
        env_publisher.publish(boundary);
        env_publisher.publish(obstacle);
        ros::spinOnce();
        ros::Duration(1).sleep();
    }
	return 1;
}

障碍物obstacles,可修改调整障碍物个数等:

#include <path_planning/obstacles.h>
#include <geometry_msgs/Point.h>


vector< vector<geometry_msgs::Point> > obstacles::getObstacleArray()
{
    vector<geometry_msgs::Point> obstaclePoint;
    geometry_msgs::Point point;

    //first point
    point.x = 50;
    point.y = 50;
    point.z = 0;

    obstaclePoint.push_back(point);

    //second point
    point.x = 50;
    point.y = 70;
    point.z = 0;

    obstaclePoint.push_back(point);

    //third point
    point.x = 80;
    point.y = 70;
    point.z = 0;

    obstaclePoint.push_back(point);

    //fourth point
    point.x = 80;
    point.y = 50;
    point.z = 0;
    obstaclePoint.push_back(point);

    //first point again to complete the box
    point.x = 50;
    point.y = 50;
    point.z = 0;
    obstaclePoint.push_back(point);

    obstacleArray.push_back(obstaclePoint);

    return obstacleArray;

}

RRT:

#include <path_planning/rrt.h>
#include <math.h>
#include <cstddef>
#include <iostream>

using namespace rrt;

/**
* default constructor for RRT class
* initializes source to 0,0
* adds sorce to rrtTree
*/
RRT::RRT()
{
    RRT::rrtNode newNode;
    newNode.posX = 0;
    newNode.posY = 0;
    newNode.parentID = 0;
    newNode.nodeID = 0;
    rrtTree.push_back(newNode);
}

/**
* default constructor for RRT class
* initializes source to input X,Y
* adds sorce to rrtTree
*/
RRT::RRT(double input_PosX, double input_PosY)
{
    RRT::rrtNode newNode;
    newNode.posX = input_PosX;
    newNode.posY = input_PosY;
    newNode.parentID = 0;
    newNode.nodeID = 0;
    rrtTree.push_back(newNode);
}

/**
* Returns the current RRT tree
* @return RRT Tree
*/
vector<RRT::rrtNode> RRT::getTree()
{
    return rrtTree;
}

/**
* For setting the rrtTree to the inputTree
* @param rrtTree
*/
void RRT::setTree(vector<RRT::rrtNode> input_rrtTree)
{
    rrtTree = input_rrtTree;
}

/**
* to get the number of nodes in the rrt Tree
* @return tree size
*/
int RRT::getTreeSize()
{
    return rrtTree.size();
}

/**
* adding a new node to the rrt Tree
*/
void RRT::addNewNode(RRT::rrtNode node)
{
    rrtTree.push_back(node);
}

/**
* removing a node from the RRT Tree
* @return the removed tree
*/
RRT::rrtNode RRT::removeNode(int id)
{
    RRT::rrtNode tempNode = rrtTree[id];
    rrtTree.erase(rrtTree.begin()+id);
    return tempNode;
}

/**
* getting a specific node
* @param node id for the required node
* @return node in the rrtNode structure
*/
RRT::rrtNode RRT::getNode(int id)
{
    return rrtTree[id];
}

/**
* return a node from the rrt tree nearest to the given point
* @param X position in X cordinate
* @param Y position in Y cordinate
* @return nodeID of the nearest Node
*/
int RRT::getNearestNodeID(double X, double Y)
{
    int i, returnID;
    double distance = 9999, tempDistance;
    for(i=0; i<this->getTreeSize(); i++)
    {
        tempDistance = getEuclideanDistance(X,Y, getPosX(i),getPosY(i));
        if (tempDistance < distance)
        {
            distance = tempDistance;
            returnID = i;
        }
    }
    return returnID;
}

/**
* returns X coordinate of the given node
*/
double RRT::getPosX(int nodeID)
{
    return rrtTree[nodeID].posX;
}

/**
* returns Y coordinate of the given node
*/
double RRT::getPosY(int nodeID)
{
    return rrtTree[nodeID].posY;
}

/**
* set X coordinate of the given node
*/
void RRT::setPosX(int nodeID, double input_PosX)
{
    rrtTree[nodeID].posX = input_PosX;
}

/**
* set Y coordinate of the given node
*/
void RRT::setPosY(int nodeID, double input_PosY)
{
    rrtTree[nodeID].posY = input_PosY;
}

/**
* returns parentID of the given node
*/
RRT::rrtNode RRT::getParent(int id)
{
    return rrtTree[rrtTree[id].parentID];
}

/**
* set parentID of the given node
*/
void RRT::setParentID(int nodeID, int parentID)
{
    rrtTree[nodeID].parentID = parentID;
}

/**
* add a new childID to the children list of the given node
*/
void RRT::addChildID(int nodeID, int childID)
{
    rrtTree[nodeID].children.push_back(childID);
}

/**
* returns the children list of the given node
*/
vector<int> RRT::getChildren(int id)
{
    return rrtTree[id].children;
}

/**
* returns number of children of a given node
*/
int RRT::getChildrenSize(int nodeID)
{
    return rrtTree[nodeID].children.size();
}

/**
* returns euclidean distance between two set of X,Y coordinates
*/
double RRT::getEuclideanDistance(double sourceX, double sourceY, double destinationX, double destinationY)
{
    return sqrt(pow(destinationX - sourceX,2) + pow(destinationY - sourceY,2));
}

/**
* returns path from root to end node
* @param endNodeID of the end node
* @return path containing ID of member nodes in the vector form
*/
vector<int> RRT::getRootToEndPath(int endNodeID)
{
    vector<int> path;
    path.push_back(endNodeID);
    while(rrtTree[path.front()].nodeID != 0)
    {
        //std::cout<<rrtTree[path.front()].nodeID<<endl;
        path.insert(path.begin(),rrtTree[path.front()].parentID);
    }
    return path;
}

RRT节点:

#include <ros/ros.h>
#include <visualization_msgs/Marker.h>
#include <geometry_msgs/Point.h>
#include <path_planning/rrt.h>
#include <path_planning/obstacles.h>
#include <iostream>
#include <cmath>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <vector>
#include <time.h>

#define success false
#define running true

using namespace rrt;

bool status = running;

void initializeMarkers(visualization_msgs::Marker &sourcePoint,
    visualization_msgs::Marker &goalPoint,
    visualization_msgs::Marker &randomPoint,
    visualization_msgs::Marker &rrtTreeMarker,
    visualization_msgs::Marker &finalPath)
{
    //init headers
	sourcePoint.header.frame_id    = goalPoint.header.frame_id    = randomPoint.header.frame_id    = rrtTreeMarker.header.frame_id    = finalPath.header.frame_id    = "path_planner";
	sourcePoint.header.stamp       = goalPoint.header.stamp       = randomPoint.header.stamp       = rrtTreeMarker.header.stamp       = finalPath.header.stamp       = ros::Time::now();
	sourcePoint.ns                 = goalPoint.ns                 = randomPoint.ns                 = rrtTreeMarker.ns                 = finalPath.ns                 = "path_planner";
	sourcePoint.action             = goalPoint.action             = randomPoint.action             = rrtTreeMarker.action             = finalPath.action             = visualization_msgs::Marker::ADD;
	sourcePoint.pose.orientation.w = goalPoint.pose.orientation.w = randomPoint.pose.orientation.w = rrtTreeMarker.pose.orientation.w = finalPath.pose.orientation.w = 1.0;

    //setting id for each marker
    sourcePoint.id    = 0;
	goalPoint.id      = 1;
	randomPoint.id    = 2;
	rrtTreeMarker.id  = 3;
    finalPath.id      = 4;

	//defining types
	rrtTreeMarker.type                                    = visualization_msgs::Marker::LINE_LIST;
	finalPath.type                                        = visualization_msgs::Marker::LINE_STRIP;
	sourcePoint.type  = goalPoint.type = randomPoint.type = visualization_msgs::Marker::SPHERE;

	//setting scale
	rrtTreeMarker.scale.x = 0.2;
	finalPath.scale.x     = 1;
	sourcePoint.scale.x   = goalPoint.scale.x = randomPoint.scale.x = 2;
    sourcePoint.scale.y   = goalPoint.scale.y = randomPoint.scale.y = 2;
    sourcePoint.scale.z   = goalPoint.scale.z = randomPoint.scale.z = 1;

    //assigning colors
	sourcePoint.color.r   = 1.0f;
	goalPoint.color.g     = 1.0f;
    randomPoint.color.b   = 1.0f;

	rrtTreeMarker.color.r = 0.8f;
	rrtTreeMarker.color.g = 0.4f;

	finalPath.color.r = 0.2f;
	finalPath.color.g = 0.2f;
	finalPath.color.b = 1.0f;

	sourcePoint.color.a = goalPoint.color.a = randomPoint.color.a = rrtTreeMarker.color.a = finalPath.color.a = 1.0f;
}

vector< vector<geometry_msgs::Point> > getObstacles()
{
    obstacles obst;
    return obst.getObstacleArray();
}

void addBranchtoRRTTree(visualization_msgs::Marker &rrtTreeMarker, RRT::rrtNode &tempNode, RRT &myRRT)
{

geometry_msgs::Point point;

point.x = tempNode.posX;
point.y = tempNode.posY;
point.z = 0;
rrtTreeMarker.points.push_back(point);

RRT::rrtNode parentNode = myRRT.getParent(tempNode.nodeID);

point.x = parentNode.posX;
point.y = parentNode.posY;
point.z = 0;

rrtTreeMarker.points.push_back(point);
}

bool checkIfInsideBoundary(RRT::rrtNode &tempNode)
{
    if(tempNode.posX < 0 || tempNode.posY < 0  || tempNode.posX > 100 || tempNode.posY > 100 ) return false;
    else return true;
}

bool checkIfOutsideObstacles(vector< vector<geometry_msgs::Point> > &obstArray, RRT::rrtNode &tempNode)
{
    double AB, AD, AMAB, AMAD;

    for(int i=0; i<obstArray.size(); i++)
    {
        AB = (pow(obstArray[i][0].x - obstArray[i][1].x,2) + pow(obstArray[i][0].y - obstArray[i][1].y,2));
        AD = (pow(obstArray[i][0].x - obstArray[i][3].x,2) + pow(obstArray[i][0].y - obstArray[i][3].y,2));
        AMAB = (((tempNode.posX - obstArray[i][0].x) * (obstArray[i][1].x - obstArray[i][0].x)) + (( tempNode.posY - obstArray[i][0].y) * (obstArray[i][1].y - obstArray[i][0].y)));
        AMAD = (((tempNode.posX - obstArray[i][0].x) * (obstArray[i][3].x - obstArray[i][0].x)) + (( tempNode.posY - obstArray[i][0].y) * (obstArray[i][3].y - obstArray[i][0].y)));
         //(0<AM⋅AB<AB⋅AB)∧(0<AM⋅AD<AD⋅AD)
        if((0 < AMAB) && (AMAB < AB) && (0 < AMAD) && (AMAD < AD))
        {
            return false;
        }
    }
    return true;
}

void generateTempPoint(RRT::rrtNode &tempNode)
{
    int x = rand() % 150 + 1;
    int y = rand() % 150 + 1;
    //std::cout<<"Random X: "<<x <<endl<<"Random Y: "<<y<<endl;
    tempNode.posX = x;
    tempNode.posY = y;
}

bool addNewPointtoRRT(RRT &myRRT, RRT::rrtNode &tempNode, int rrtStepSize, vector< vector<geometry_msgs::Point> > &obstArray)
{
    int nearestNodeID = myRRT.getNearestNodeID(tempNode.posX,tempNode.posY);

    RRT::rrtNode nearestNode = myRRT.getNode(nearestNodeID);

    double theta = atan2(tempNode.posY - nearestNode.posY,tempNode.posX - nearestNode.posX);

    tempNode.posX = nearestNode.posX + (rrtStepSize * cos(theta));
    tempNode.posY = nearestNode.posY + (rrtStepSize * sin(theta));

    if(checkIfInsideBoundary(tempNode) && checkIfOutsideObstacles(obstArray,tempNode))
    {
        tempNode.parentID = nearestNodeID;
        tempNode.nodeID = myRRT.getTreeSize();
        myRRT.addNewNode(tempNode);
        return true;
    }
    else
        return false;
}

bool checkNodetoGoal(int X, int Y, RRT::rrtNode &tempNode)
{
    double distance = sqrt(pow(X-tempNode.posX,2)+pow(Y-tempNode.posY,2));
    if(distance < 3)
    {
        return true;
    }
    return false;
}

void setFinalPathData(vector< vector<int> > &rrtPaths, RRT &myRRT, int i, visualization_msgs::Marker &finalpath, int goalX, int goalY)
{
    RRT::rrtNode tempNode;
    geometry_msgs::Point point;
    for(int j=0; j<rrtPaths[i].size();j++)
    {
        tempNode = myRRT.getNode(rrtPaths[i][j]);

        point.x = tempNode.posX;
        point.y = tempNode.posY;
        point.z = 0;

        finalpath.points.push_back(point);
    }

    point.x = goalX;
    point.y = goalY;
    finalpath.points.push_back(point);
}

int main(int argc,char** argv)
{
    //initializing ROS
    ros::init(argc,argv,"rrt_node");
	ros::NodeHandle n;

	//defining Publisher
	ros::Publisher rrt_publisher = n.advertise<visualization_msgs::Marker>("path_planner_rrt",1);

	//defining markers
    visualization_msgs::Marker sourcePoint;
    visualization_msgs::Marker goalPoint;
    visualization_msgs::Marker randomPoint;
    visualization_msgs::Marker rrtTreeMarker;
    visualization_msgs::Marker finalPath;

    initializeMarkers(sourcePoint, goalPoint, randomPoint, rrtTreeMarker, finalPath);

    //setting source and goal
    sourcePoint.pose.position.x = 2;
    sourcePoint.pose.position.y = 2;

    goalPoint.pose.position.x = 95;
    goalPoint.pose.position.y = 95;

    rrt_publisher.publish(sourcePoint);
    rrt_publisher.publish(goalPoint);
    ros::spinOnce();
    ros::Duration(0.01).sleep();

    srand (time(NULL));
    //initialize rrt specific variables

    //initializing rrtTree
    RRT myRRT(2.0,2.0);
    int goalX, goalY;
    goalX = goalY = 95;

    int rrtStepSize = 3;

    vector< vector<int> > rrtPaths;
    vector<int> path;
    int rrtPathLimit = 1;

    int shortestPathLength = 9999;
    int shortestPath = -1;

    RRT::rrtNode tempNode;

    vector< vector<geometry_msgs::Point> >  obstacleList = getObstacles();

    bool addNodeResult = false, nodeToGoal = false;

    while(ros::ok() && status)
    {
        if(rrtPaths.size() < rrtPathLimit)
        {
            generateTempPoint(tempNode);
            //std::cout<<"tempnode generated"<<endl;
            addNodeResult = addNewPointtoRRT(myRRT,tempNode,rrtStepSize,obstacleList);
            if(addNodeResult)
            {
               // std::cout<<"tempnode accepted"<<endl;
                addBranchtoRRTTree(rrtTreeMarker,tempNode,myRRT);
               // std::cout<<"tempnode printed"<<endl;
                nodeToGoal = checkNodetoGoal(goalX, goalY,tempNode);
                if(nodeToGoal)
                {
                    path = myRRT.getRootToEndPath(tempNode.nodeID);
                    rrtPaths.push_back(path);
                    std::cout<<"New Path Found. Total paths "<<rrtPaths.size()<<endl;
                    //ros::Duration(10).sleep();
                    //std::cout<<"got Root Path"<<endl;
                }
            }
        }
        else //if(rrtPaths.size() >= rrtPathLimit)
        {
            status = success;
            std::cout<<"Finding Optimal Path"<<endl;
            for(int i=0; i<rrtPaths.size();i++)
            {
                if(rrtPaths[i].size() < shortestPath)
                {
                    shortestPath = i;
                    shortestPathLength = rrtPaths[i].size();
                }
            }
            setFinalPathData(rrtPaths, myRRT, shortestPath, finalPath, goalX, goalY);
            rrt_publisher.publish(finalPath);
        }


        rrt_publisher.publish(sourcePoint);
        rrt_publisher.publish(goalPoint);
        rrt_publisher.publish(rrtTreeMarker);
        //rrt_publisher.publish(finalPath);
        ros::spinOnce();
        ros::Duration(0.01).sleep();
    }
	return 1;
}

头文件定义类如下:

obstacles:

#ifndef OBSTACLES_H
#define OBSTACLES_H
#include <geometry_msgs/Point.h>
#include <vector>
#include <iostream>

using namespace std;

class obstacles
{
    public:
        /** Default constructor */
        obstacles() {}
        /** Default destructor */
        virtual ~obstacles() {}

        vector< vector<geometry_msgs::Point> > getObstacleArray();

    protected:
    private:
        vector< vector<geometry_msgs::Point> > obstacleArray;
};

#endif // OBSTACLES_H

rrt:

#ifndef rrt_h
#define rrt_h

#include <vector>
using namespace std;
namespace rrt {
	class RRT{

        public:

            RRT();
            RRT(double input_PosX, double input_PosY);

            struct rrtNode{
                int nodeID;
                double posX;
                double posY;
                int parentID;
                vector<int> children;
            };

            vector<rrtNode> getTree();
            void setTree(vector<rrtNode> input_rrtTree);
            int getTreeSize();

            void addNewNode(rrtNode node);
            rrtNode removeNode(int nodeID);
            rrtNode getNode(int nodeID);

            double getPosX(int nodeID);
            double getPosY(int nodeID);
            void setPosX(int nodeID, double input_PosX);
            void setPosY(int nodeID, double input_PosY);

            rrtNode getParent(int nodeID);
            void setParentID(int nodeID, int parentID);

            void addChildID(int nodeID, int childID);
            vector<int> getChildren(int nodeID);
            int getChildrenSize(int nodeID);

            int getNearestNodeID(double X, double Y);
            vector<int> getRootToEndPath(int endNodeID);

        private:
            vector<rrtNode> rrtTree;
            double getEuclideanDistance(double sourceX, double sourceY, double destinationX, double destinationY);
	};
};

#endif

其他代码:

CMakeLists:

cmake_minimum_required(VERSION 2.8.3)
project(path_planning)

## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
  roscpp
  std_msgs
  visualization_msgs
)

## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)


## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()

################################################
## Declare ROS messages, services and actions ##
################################################

## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
##   your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
##   * add a build_depend and a run_depend tag for each package in MSG_DEP_SET
##   * If MSG_DEP_SET isn't empty the following dependencies might have been
##     pulled in transitively but can be declared for certainty nonetheless:
##     * add a build_depend tag for "message_generation"
##     * add a run_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
##   * add "message_generation" and every package in MSG_DEP_SET to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * add "message_runtime" and every package in MSG_DEP_SET to
##     catkin_package(CATKIN_DEPENDS ...)
##   * uncomment the add_*_files sections below as needed
##     and list every .msg/.srv/.action file to be processed
##   * uncomment the generate_messages entry below
##   * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)

## Generate messages in the 'msg' folder
# add_message_files(
#   FILES
#   Message1.msg
#   Message2.msg
# )

## Generate services in the 'srv' folder
# add_service_files(
#   FILES
#   Service1.srv
#   Service2.srv
# )

## Generate actions in the 'action' folder
# add_action_files(
#   FILES
#   Action1.action
#   Action2.action
# )

## Generate added messages and services with any dependencies listed here
# generate_messages(
#   DEPENDENCIES
#   std_msgs#   visualization_msgs
# )

###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if you package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
  INCLUDE_DIRS include
  LIBRARIES path_planning
  CATKIN_DEPENDS roscpp std_msgs visualization_msgs
  DEPENDS system_lib
)

###########
## Build ##
###########

## Specify additional locations of header files
## Your package locations should be listed before other locations
# include_directories(include)
include_directories(include
  ${catkin_INCLUDE_DIRS}
)

## Declare a cpp library
add_library(path_planning
	src/rrt.cpp
	src/obstacles.cpp
)

## Declare a cpp executable
# add_executable(path_planning_node src/path_planning_node.cpp)

add_executable(rrt_node src/rrt_node.cpp)
add_dependencies(rrt_node path_planning)
target_link_libraries(rrt_node path_planning ${catkin_LIBRARIES} )

add_executable(env_node src/environment.cpp)
add_dependencies(env_node path_planning)
target_link_libraries(env_node path_planning ${catkin_LIBRARIES} )

## Add cmake target dependencies of the executable/library
## as an example, message headers may need to be generated before nodes
# add_dependencies(path_planning_node path_planning_generate_messages_cpp)

## Specify libraries to link a library or executable target against
# target_link_libraries(path_planning_node
#   ${catkin_LIBRARIES}
# )

#############
## Install ##
#############

# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html

## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# install(PROGRAMS
#   scripts/my_python_script
#   DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )

## Mark executables and/or libraries for installation
# install(TARGETS path_planning path_planning_node
#   ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )

## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
#   DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
#   FILES_MATCHING PATTERN "*.h"
#   PATTERN ".svn" EXCLUDE
# )

## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
#   # myfile1
#   # myfile2
#   DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )

#############
## Testing ##
#############

## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_path_planning.cpp)
# if(TARGET ${PROJECT_NAME}-test)
#   target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()

## Add folders to be run by python nosetests
# catkin_add_nosetests(test)

package:

<?xml version="1.0"?>
<package>
  <name>path_planning</name>
  <version>1.0.0</version>
  <description>A path planning algorithm using RRT visualized in RVIZ</description>

  <!-- One maintainer tag required, multiple allowed, one person per tag --> 
  <!-- Example:  -->
  <!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
  <maintainer email="nalin00796@gmail.com">Nalin Gupta</maintainer>


  <!-- One license tag required, multiple allowed, one license per tag -->
  <!-- Commonly used license strings: -->
  <!--   BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
  <license>TODO</license>


  <!-- Url tags are optional, but mutiple are allowed, one per tag -->
  <!-- Optional attribute type can be: website, bugtracker, or repository -->
  <!-- Example: -->
  <!-- <url type="website">http://wiki.ros.org/path_planning</url> -->


  <!-- Author tags are optional, mutiple are allowed, one per tag -->
  <!-- Authors do not have to be maintianers, but could be -->
  <!-- Example: -->
  <!-- <author email="jane.doe@example.com">Jane Doe</author> -->


  <!-- The *_depend tags are used to specify dependencies -->
  <!-- Dependencies can be catkin packages or system dependencies -->
  <!-- Examples: -->
  <!-- Use build_depend for packages you need at compile time: -->
  <!--   <build_depend>message_generation</build_depend> -->
  <!-- Use buildtool_depend for build tool packages: -->
  <!--   <buildtool_depend>catkin</buildtool_depend> -->
  <!-- Use run_depend for packages you need at runtime: -->
  <!--   <run_depend>message_runtime</run_depend> -->
  <!-- Use test_depend for packages you need only for testing: -->
  <!--   <test_depend>gtest</test_depend> -->
  <buildtool_depend>catkin</buildtool_depend>
  <build_depend>roscpp</build_depend>
  <build_depend>std_msgs</build_depend>
  <build_depend>visualization_msgs</build_depend>
  <run_depend>roscpp</run_depend>
  <run_depend>std_msgs</run_depend>
  <run_depend>visualization_msgs</run_depend>


  <!-- The export tag contains other, unspecified, tags -->
  <export>
    <!-- You can specify that this package is a metapackage here: -->
    <!-- <metapackage/> -->

    <!-- Other tools can request additional information be placed here -->

  </export>
</package>