数论部分第二节:埃拉托斯特尼筛法 埃拉托斯特尼筛法

时间:2022-05-07
本文章向大家介绍数论部分第二节:埃拉托斯特尼筛法 埃拉托斯特尼筛法,主要内容包括埃拉托斯特尼筛法、其他方法、基本概念、基础应用、原理机制和需要注意的事项等,并结合实例形式分析了其使用技巧,希望通过本文能帮助到大家理解应用这部分内容。

埃拉托斯特尼筛法

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。怎么判断n以内的哪些数是质数呢?

埃拉托斯特尼筛法

厄拉多塞是一位古希腊数学家,他在寻找素数时,采用了一种与众不同的方法:先将2-N的各数放入表中,然后在2的上面画一个圆圈,然后划去2的其他倍数;第一个既未画圈又没有被划去的数是3,将它画圈,再划去3的其他倍数;现在既未画圈又没有被划去的第一个数是5,将它画圈,并划去5的其他倍数……依次类推,一直到所有小于或等于N的各数都画了圈或划去为止。这时,表中画了圈的以及未划去的那些数正好就是小于 N的素数。 如下图所示:

而其实迭代系数i不需要遍历到n-1为止,只需到√(n-1)即可。反证法:

  • 如果n-1不是质数,那么n-1可以化解成两个整数因子相乘,n-1=d1×d2。
  • 如果d1和d2均大于√(n-1),则有:n-1=d1×d2 > √(n-1)×√(n-1)=n-1
  • 则n-1必有因子d1或d2小于等于√(n-1),从而n-1可以被小于或等于√(n-1)的某整数的遍历到。
  • 小于n-1的整数如果是质数必然会被遍历到。

如果N是合数,则一定存在大于1小于N的整数d1和d2,使得N=d1×d2。如果d1和d2均大于√N,则有:N=d1×d2>√N×√N=N。而这是不可能的,所以,d1和d2中必有一个小于或等于√N。 代码如下:

 1 public class Solution {
 2     public int countPrimes(int n) {
 3         if(n <= 2)
 4             return 0;
 5         boolean[] prime = new boolean[n];
 6         for(int i =2; i < n; ++i) {
 7             prime[i] = true;
 8         }
 9         for(int i = 2; i <= Math.sqrt(n-1); ++i) { //i <= √(n-1) 即可
10             if(prime[i]) {
11                 for(int j = i + i;j < n; j += i) {
12                     prime[j] = false;
13                 }
14             }
15         }
16         int count = 0;
17         for(int i = 2; i < n; ++i) {
18             if(prime[i])
19                 count++;
20         }
21         return count;
22     } 
23 }

其他方法

任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…) N>1时,其中6N,6N+2,6N+3,6N+4必然不是质数,只可能是6N+1或者6N+5,即6N±1。因此可以通过6N±1筛子大量筛减非质数。