写让别人能读懂的代码+网页性能管理详解

时间:2022-05-07
本文章向大家介绍写让别人能读懂的代码+网页性能管理详解,主要内容包括网页性能管理详解、二、重排和重绘、三、对于性能的影响、四、提高性能的九个技巧、五、刷新率、六、开发者工具的Timeline面板、七、window.requestAnimationFrame()、八、window.requestIdleCallback()、九、参考链接、基本概念、基础应用、原理机制和需要注意的事项等,并结合实例形式分析了其使用技巧,希望通过本文能帮助到大家理解应用这部分内容。

随着软件行业的不断发展,历史遗留的程序越来越多,代码的维护成本越来越大,甚至大于开发成本。而新功能的开发又常常依赖于旧代码,阅读旧代码所花费的时间几乎要大于写新功能的代码。

我前几天看了一本书,书中有这么一句话:

“复杂的代码往往都是新手所写,只有经验老道的高手才能写出简单,富有表现力的代码”

此话虽然说的有点夸张,可是也说明了经验的重要性。

我们所写的代码除了让机器执行外,还需要别人来阅读。所以我们要写:

  1. 让别人能读懂的代码
  2. 可扩展的代码
  3. 可测试的代码(代码应该具备可测试性,对没有可测试性的代码写测试,是浪费生命的表现)

其中2,3点更多强调的是面向对象的设计原则。而本文则更多关注于局部的代码问题,本文通过举例的方式,总结平时常犯的错误和优化方式。

本文的例子基于两个指导原则:

一.DRY(Don't repeat yourself)

此原则如此重要,简单来说是因为:

  • 代码越少,Bug也越少
  • 没有重复逻辑的代码更易于维护,当你修复了一个bug,如果相同的逻辑还出现在另外一个地方,而你没意识到,你有没有觉得自己很冤?

二.TED原则

  • 简洁(Terse)
  • 具有表达力(Expressive)
  • 只做一件事(Do one thing)

三.举例说明

1.拒绝注释,用代码来阐述注释

反例:

/// <summary>
/// !@#$%^&^&*((!@#$%^&^&*((!@#$%^&^&*((!@#$%^&^&*((
/// </summary>
/// <returns></returns>
 public decimal GetCash()
 {
     //!@#$%^&^&*((!@#$%^&^&*((
     var a = new List<decimal>() { 2m, 3m, 10m };
     var b = 2;
     var c = 0m;
     //!@#$%^&^&*((!@#$%^&^&*((!@#$%^&^&*((
     foreach (var p in a)
     {
         c += p*b;
     }
     return c;
 }

重构后:

public decimal CalculateTotalCash()
{
    var prices=new List<decimal>(){2m,3m,10m};
    var itemCount = 2;
    return prices.Sum(p => p*itemCount);
}

良好的代码命名完全可以替代注释的作用,如果你正在试图写一段注释,从某种角度来看,你正在试图写一段别人无法理解的代码。

当你无法为你的方法起一个准确的名称时,很可能你的方法不止做了一件事,违反了(Do one thing)。特别是你想在方法名中加入:And,Or,If等词时

2. 为布尔变量赋值

反例:

public bool IsAdult(int age)
{
    bool isAdult;
    if (age > 18)
    {
        isAdult = true;
    }
    else
    {
        isAdult = false;
    }
    return isAdult;
}

重构后:

public bool IsAdult(int age)
{
    var isAdult = age > 18;
    return isAdult;
}

3.双重否定的条件判断

反例:

if (!isNotRemeberMe)
{

 }

重构后:

if (isRemeberMe)
{

}

不管你有没有见过这样的条件,反正我见过。见到这样的条件判断,我顿时就晕了。

4.拒绝HardCode,拒绝挖坑

反例:

if (carName == "Nissan")
 {

}

重构后:

if (car == Car.Nissan)
{

 }

既然咱们玩的是强类型语言,咱就用上编译器的功能,让错误发生在编译阶段

5.拒绝魔数,拒绝挖坑

反例:

if (age > 18)
{

}

重构后:

const int adultAge = 18;
 if (age > adultAge)
{

}

所谓魔数(Magic number)就是一个魔法数字,读者完全弄不明白你这个数字是什么,这样的代码平时见的多了

6.复杂的条件判断

反例:

if (job.JobState == JobState.New
    || job.JobState == JobState.Submitted
    || job.JobState == JobState.Expired
    || job.JobTitle.IsNullOrWhiteSpace())
{
    //....
}

重构后:

if (CanBeDeleted(job))
    {
        //
    }        

private bool CanBeDeleted(Job job)
{
    var invalidJobState = job.JobState == JobState.New
                          || job.JobState == JobState.Submitted
                          || job.JobState == JobState.Expired;
    var invalidJob = string.IsNullOrEmpty(job.JobTitle);

    return invalidJobState || invalidJob;
}

有没有豁然开朗的赶脚?

7.嵌套判断

反例:

var isValid = false;
if (!string.IsNullOrEmpty(user.UserName))
{
    if (!string.IsNullOrEmpty(user.Password))
    {
        if (!string.IsNullOrEmpty(user.Email))
        {
            isValid = true;
        }
    }
}
return isValid;

重构后:

if (string.IsNullOrEmpty(user.UserName)) return false;
if (string.IsNullOrEmpty(user.Password)) return false;
if (string.IsNullOrEmpty(user.Email)) return false;
 return true;

第一种代码是受到早期的某些思想:使用一个变量来存储返回结果。事实证明,你一旦知道了结果就应该尽早返回。

8.使用前置条件

反例:

if (!string.IsNullOrEmpty(userName))
{
    if (!string.IsNullOrEmpty(password))
    {
        //register
    }
    else
    {
        throw new ArgumentException("user password can not be empty");
    }
}
else
{
    throw new ArgumentException("user name can not be empty");
}

重构后:

if (string.IsNullOrEmpty(userName)) throw new ArgumentException("user name can not be empty");
if (string.IsNullOrEmpty(password)) throw new ArgumentException("user password can not be empty");
//register

重构后的风格更接近契约编程,首先要满足前置条件,否则免谈。

9.参数过多,超过3个

反例:

public void RegisterUser(string userName, string password, string email, string phone)
{

}

重构后:

public void RegisterUser(User user)
{

}

过多的参数让读者难以抓住代码的意图,同时过多的参数将会影响方法的稳定性。另外也预示着参数应该聚合为一个Model

10.方法签名中含有布尔参数

反例:

public void RegisterUser(User user, bool sendEmail)
 {

 }

重构后:

public void RegisterUser(User user)
{

}

public void SendEmail(User user)
{

}

布尔参数在告诉方法不止做一件事,违反了Do one thing

10.写具有表达力的代码

反例:

private string CombineTechnicalBookNameOfAuthor(List<Book> books, string author)
{
    var filterBooks = new List<Book>();

    foreach (var book in books)
    {
        if (book.Category == BookCategory.Technical && book.Author == author)
        {
            filterBooks.Add(book);
        }
    }
    var name = "";
    foreach (var book in filterBooks)
    {
        name += book.Name + "|";
    }
    return name;
}

重构后:

private string CombineTechnicalBookNameOfAuthor(List<Book> books, string author)
 {
     var combinedName = books.Where(b => b.Category == BookCategory.Technical)
         .Where(b => b.Author == author)
         .Select(b => b.Name)
         .Aggregate((a, b) => a + "|" + b);

     return combinedName;
 }

相对于命令式代码,声明性代码更加具有表达力,也更简洁。这也是函数式编程为什么越来越火的原因之一。

四.关于DRY

平时大家重构代码,一个重要的思想就是DRY。我要分享一个DRY的反例:

项目在架构过程中会有各种各样的MODEL层,例如:DomainModel,ViewModel,DTO。很多时候这几个Model里的字段大部分是相同的,于是有人就会想到DRY原则,干脆直接用一种类型,省得粘贴复制,来回转换。

这个反例失败的根本原因在于:这几种Model职责各不相同,虽然大部分情况下内容会有重复,但是他们担当着各种不同的角色。

考虑这种场景: DomainModel有一个字段DateTime Birthday{get;set;},ViewModel同样具有DateTime Birthday{get;set;}。需求升级:要求界面不再显示生日,只需要显示是否成年。我们只需要在ViewModel中添加一个Bool IsAdult{get{return ....}}即可,DomainModel完全不用变化。

五.利用先进的生产工具

以vs插件中的Reshaper为例,本文列举的大部分反例,Reshaprer均能给予不同程度的提示。经过一段时间的练习,当Reshaper对你的代码给予不了任何提示的时候,你的代码会有一个明显的提高。

截图说明Reshaper的提示功能:

光标移动在波浪线处,然后Alt+Enter,Resharper 会自动对代码进行优化

如果你能够避免本文总结的反例,你的代码就已经具备了优秀代码应有的基因。当然高质量的代码还需要良好的设计和遵循面向对象编程的原则。 如果想了解更多相关内容,请阅读《代码大全》,《代码整洁之道》,《重构 改善既有代码的设计》,《敏捷软件开发 原则、模式与实践》

网页性能管理详解

你遇到过性能很差的网页吗?

这种网页响应非常缓慢,占用大量的CPU和内存,浏览起来常常有卡顿,页面的动画效果也不流畅。

你会有什么反应?我猜想,大多数用户会关闭这个页面,改为访问其他网站。作为一个开发者,肯定不愿意看到这种情况,那么怎样才能提高性能呢?

本文将详细介绍性能问题的出现原因,以及解决方法。

一、网页生成的过程

要理解网页性能为什么不好,就要了解网页是怎么生成的。

网页的生成过程,大致可以分成五步。

  1. HTML代码转化成DOM
  2. CSS代码转化成CSSOM(CSS Object Model)
  3. 结合DOM和CSSOM,生成一棵渲染树(包含每个节点的视觉信息)
  4. 生成布局(layout),即将所有渲染树的所有节点进行平面合成
  5. 将布局绘制(paint)在屏幕上

这五步里面,第一步到第三步都非常快,耗时的是第四步和第五步。

"生成布局"(flow)和"绘制"(paint)这两步,合称为"渲染"(render)。

二、重排和重绘

网页生成的时候,至少会渲染一次。用户访问的过程中,还会不断重新渲染。

以下三种情况,会导致网页重新渲染。

  • 修改DOM
  • 修改样式表
  • 用户事件(比如鼠标悬停、页面滚动、输入框键入文字、改变窗口大小等等)

重新渲染,就需要重新生成布局和重新绘制。前者叫做"重排"(reflow),后者叫做"重绘"(repaint)。

需要注意的是,"重绘"不一定需要"重排",比如改变某个网页元素的颜色,就只会触发"重绘",不会触发"重排",因为布局没有改变。但是,"重排"必然导致"重绘",比如改变一个网页元素的位置,就会同时触发"重排"和"重绘",因为布局改变了。

三、对于性能的影响

重排和重绘会不断触发,这是不可避免的。但是,它们非常耗费资源,是导致网页性能低下的根本原因。

提高网页性能,就是要降低"重排"和"重绘"的频率和成本,尽量少触发重新渲染。

前面提到,DOM变动和样式变动,都会触发重新渲染。但是,浏览器已经很智能了,会尽量把所有的变动集中在一起,排成一个队列,然后一次性执行,尽量避免多次重新渲染。

div.style.color = 'blue';div.style.marginTop = '30px';

上面代码中,div元素有两个样式变动,但是浏览器只会触发一次重排和重绘。

如果写得不好,就会触发两次重排和重绘。

div.style.color = 'blue';var margin = parseInt(div.style.marginTop);div.style.marginTop = (margin + 10) + 'px';

上面代码对div元素设置背景色以后,第二行要求浏览器给出该元素的位置,所以浏览器不得不立即重排。

一般来说,样式的写操作之后,如果有下面这些属性的读操作,都会引发浏览器立即重新渲染。

  • offsetTop/offsetLeft/offsetWidth/offsetHeight
  • scrollTop/scrollLeft/scrollWidth/scrollHeight
  • clientTop/clientLeft/clientWidth/clientHeight
  • getComputedStyle()

所以,从性能角度考虑,尽量不要把读操作和写操作,放在一个语句里面。

// baddiv.style.left = div.offsetLeft + 10 + "px";div.style.top = div.offsetTop + 10 + "px";// goodvar left = div.offsetLeft;var top  = div.offsetTop;div.style.left = left + 10 + "px";div.style.top = top + 10 + "px";

一般的规则是:

  • 样式表越简单,重排和重绘就越快。
  • 重排和重绘的DOM元素层级越高,成本就越高。
  • table元素的重排和重绘成本,要高于div元素

四、提高性能的九个技巧

有一些技巧,可以降低浏览器重新渲染的频率和成本。

第一条是上一节说到的,DOM 的多个读操作(或多个写操作),应该放在一起。不要两个读操作之间,加入一个写操作。

第二条,如果某个样式是通过重排得到的,那么最好缓存结果。避免下一次用到的时候,浏览器又要重排。

第三条,不要一条条地改变样式,而要通过改变class,或者csstext属性,一次性地改变样式。

// badvar left = 10;var top = 10;el.style.left = left + "px";el.style.top  = top  + "px";// good 
el.className += " theclassname";// goodel.style.cssText += "; left: " + left + "px; top: " + top + "px;";

第四条,尽量使用离线DOM,而不是真实的网面DOM,来改变元素样式。比如,操作Document Fragment对象,完成后再把这个对象加入DOM。再比如,使用 cloneNode() 方法,在克隆的节点上进行操作,然后再用克隆的节点替换原始节点。

第五条,先将元素设为display: none(需要1次重排和重绘),然后对这个节点进行100次操作,最后再恢复显示(需要1次重排和重绘)。这样一来,你就用两次重新渲染,取代了可能高达100次的重新渲染。

第六条,position属性为absolutefixed的元素,重排的开销会比较小,因为不用考虑它对其他元素的影响。

第七条,只在必要的时候,才将元素的display属性为可见,因为不可见的元素不影响重排和重绘。另外,visibility : hidden的元素只对重绘有影响,不影响重排。

第八条,使用虚拟DOM的脚本库,比如React等。

第九条,使用 window.requestAnimationFrame()、window.requestIdleCallback() 这两个方法调节重新渲染(详见后文)。

五、刷新率

很多时候,密集的重新渲染是无法避免的,比如scroll事件的回调函数和网页动画。

网页动画的每一帧(frame)都是一次重新渲染。每秒低于24帧的动画,人眼就能感受到停顿。一般的网页动画,需要达到每秒30帧到60帧的频率,才能比较流畅。如果能达到每秒70帧甚至80帧,就会极其流畅。

大多数显示器的刷新频率是60Hz,为了与系统一致,以及节省电力,浏览器会自动按照这个频率,刷新动画(如果可以做到的话)。

所以,如果网页动画能够做到每秒60帧,就会跟显示器同步刷新,达到最佳的视觉效果。这意味着,一秒之内进行60次重新渲染,每次重新渲染的时间不能超过16.66毫秒。

一秒之间能够完成多少次重新渲染,这个指标就被称为"刷新率",英文为FPS(frame per second)。60次重新渲染,就是60FPS。

六、开发者工具的Timeline面板

Chrome浏览器开发者工具的Timeline面板,是查看"刷新率"的最佳工具。这一节介绍如何使用这个工具。

首先,按下 F12 打开"开发者工具",切换到Timeline面板。

左上角有一个灰色的圆点,这是录制按钮,按下它会变成红色。然后,在网页上进行一些操作,再按一次按钮完成录制。

Timeline面板提供两种查看方式:横条的是"事件模式"(Event Mode),显示重新渲染的各种事件所耗费的时间;竖条的是"帧模式"(Frame Mode),显示每一帧的时间耗费在哪里。

先看"事件模式",你可以从中判断,性能问题发生在哪个环节,是JavaScript的执行,还是渲染?

不同的颜色表示不同的事件。

  • 蓝色:网络通信和HTML解析
  • 黄色:JavaScript执行
  • 紫色:样式计算和布局,即重排
  • 绿色:重绘

哪种色块比较多,就说明性能耗费在那里。色块越长,问题越大。

帧模式(Frames mode)用来查看单个帧的耗时情况。每帧的色柱高度越低越好,表示耗时少。

你可以看到,帧模式有两条水平的参考线。

下面的一条是60FPS,低于这条线,可以达到每秒60帧;上面的一条是30FPS,低于这条线,可以达到每秒30次渲染。如果色柱都超过30FPS,这个网页就有性能问题了。

此外,还可以查看某个区间的耗时情况。

或者点击每一帧,查看该帧的时间构成。

七、window.requestAnimationFrame()

有一些JavaScript方法可以调节重新渲染,大幅提高网页性能。

其中最重要的,就是 window.requestAnimationFrame() 方法。它可以将某些代码放到下一次重新渲染时执行。

function doubleHeight(element) {
  var currentHeight = element.clientHeight;
  element.style.height = (currentHeight * 2) + 'px';}elements.forEach(doubleHeight);

上面的代码使用循环操作,将每个元素的高度都增加一倍。可是,每次循环都是,读操作后面跟着一个写操作。这会在短时间内触发大量的重新渲染,显然对于网页性能很不利。

我们可以使用window.requestAnimationFrame(),让读操作和写操作分离,把所有的写操作放到下一次重新渲染。

function doubleHeight(element) {
  var currentHeight = element.clientHeight;
  window.requestAnimationFrame(function () {
    element.style.height = (currentHeight * 2) + 'px';
  });}elements.forEach(doubleHeight);

页面滚动事件(scroll)的监听函数,就很适合用 window.requestAnimationFrame() ,推迟到下一次重新渲染。

$(window).on('scroll', function() {
   window.requestAnimationFrame(scrollHandler);});

当然,最适用的场合还是网页动画。下面是一个旋转动画的例子,元素每一帧旋转1度。

var rAF = window.requestAnimationFrame;var degrees = 0;function update() {
  div.style.transform = "rotate(" + degrees + "deg)";
  console.log('updated to degrees ' + degrees);
  degrees = degrees + 1;
  rAF(update);}rAF(update);

八、window.requestIdleCallback()

还有一个函数window.requestIdleCallback(),也可以用来调节重新渲染。

它指定只有当一帧的末尾有空闲时间,才会执行回调函数。

requestIdleCallback(fn);

上面代码中,只有当前帧的运行时间小于16.66ms时,函数fn才会执行。否则,就推迟到下一帧,如果下一帧也没有空闲时间,就推迟到下下一帧,以此类推。

它还可以接受第二个参数,表示指定的毫秒数。如果在指定 的这段时间之内,每一帧都没有空闲时间,那么函数fn将会强制执行。

requestIdleCallback(fn, 5000);

上面的代码表示,函数fn最迟会在5000毫秒之后执行。

函数 fn 可以接受一个 deadline 对象作为参数。

requestIdleCallback(function someHeavyComputation(deadline) {
  while(deadline.timeRemaining() > 0) {
    doWorkIfNeeded();
  }

  if(thereIsMoreWorkToDo) {
    requestIdleCallback(someHeavyComputation);
  }});

上面代码中,回调函数 someHeavyComputation 的参数是一个 deadline 对象。

deadline对象有一个方法和一个属性:timeRemaining() 和 didTimeout。

(1)timeRemaining() 方法

timeRemaining() 方法返回当前帧还剩余的毫秒。这个方法只能读,不能写,而且会动态更新。因此可以不断检查这个属性,如果还有剩余时间的话,就不断执行某些任务。一旦这个属性等于0,就把任务分配到下一轮requestIdleCallback

前面的示例代码之中,只要当前帧还有空闲时间,就不断调用doWorkIfNeeded方法。一旦没有空闲时间,但是任务还没有全执行,就分配到下一轮requestIdleCallback

(2)didTimeout属性

deadline对象的 didTimeout 属性会返回一个布尔值,表示指定的时间是否过期。这意味着,如果回调函数由于指定时间过期而触发,那么你会得到两个结果。

  • timeRemaining方法返回0
  • didTimeout 属性等于 true

因此,如果回调函数执行了,无非是两种原因:当前帧有空闲时间,或者指定时间到了。

function myNonEssentialWork (deadline) {
  while ((deadline.timeRemaining() > 0 || deadline.didTimeout) && tasks.length > 0)
    doWorkIfNeeded();

  if (tasks.length > 0)
    requestIdleCallback(myNonEssentialWork);}requestIdleCallback(myNonEssentialWork, 5000);

上面代码确保了,doWorkIfNeeded 函数一定会在将来某个比较空闲的时间(或者在指定时间过期后)得到反复执行。

requestIdleCallback 是一个很新的函数,刚刚引入标准,目前只有Chrome支持。

九、参考链接

  • Domenico De Felice, How browsers work
  • Stoyan Stefanov, Rendering: repaint, reflow/relayout, restyle
  • Addy Osmani, Improving Web App Performance With the Chrome DevTools Timeline and Profiles
  • Tom Wiltzius, Jank Busting for Better Rendering Performance
  • Paul Lewis, Using requestIdleCallback

(完)