迭代器和生成器

时间:2022-04-23
本文章向大家介绍迭代器和生成器,主要内容包括一 迭代和可迭代协议、二.生成器、基本概念、基础应用、原理机制和需要注意的事项等,并结合实例形式分析了其使用技巧,希望通过本文能帮助到大家理解应用这部分内容。

一 迭代和可迭代协议

什么叫迭代

1234不可以for循环,是因为它不可迭代。那么如果“可迭代”,就应该可以被for循环了。

这个我们知道呀,字符串、列表、元组、字典、集合都可以被for循环,说明他们都是可迭代的

我们怎么来证明这一点呢?

from collections import Iterable
                             
l = [1,2,3,4]                
t = (1,2,3,4)                
d = {1:2,3:4}                
s = {1,2,3,4}                
                             
print(isinstance(l,Iterable))
print(isinstance(t,Iterable))
print(isinstance(d,Iterable))
print(isinstance(s,Iterable))

结合我们使用for循环取值的现象,再从字面上理解一下,其实迭代就是我们刚刚说的,可以将某个数据集内的数据“一个挨着一个的取出来”,就叫做迭代

可迭代协议

可以被迭代要满足的要求就叫做可迭代协议。可迭代协议的定义非常简单,就是内部实现了__iter__方法。

迭代器协议

'''
dir([1,2].__iter__())是列表迭代器中实现的所有方法,dir([1,2])是列表中实现的所有方法,都是以列表的形式返回给我们的,为了看的更清楚,我们分别把他们转换成集合,
然后取差集。
'''
#print(dir([1,2].__iter__()))
#print(dir([1,2]))
print(set(dir([1,2].__iter__()))-set(dir([1,2])))

结果:
{'__length_hint__', '__next__', '__setstate__'}

我们看到在列表迭代器中多了三个方法,那么这三个方法都分别做了什么事呢?

iter_l = [1,2,3,4,5,6].__iter__()
#获取迭代器中元素的长度
print(iter_l.__length_hint__())
#根据索引值指定从哪里开始迭代
print('*',iter_l.__setstate__(4))
#一个一个的取值
print('**',iter_l.__next__())
print('***',iter_l.__next__())

在for循环中,就是在内部调用了__next__方法才能取到一个一个的值。

那接下来我们就用迭代器的next方法来写一个不依赖for的遍历。

l = [1,2,3,4]
l_iter = l.__iter__()
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)

这是一段会报错的代码,如果我们一直取next取到迭代器里已经没有元素了,就会抛出一个异常StopIteration,告诉我们,列表中已经没有有效的元素了。

这个时候,我们就要使用异常处理机制来把这个异常处理掉。

l = [1,2,3,4]
l_iter = l.__iter__()
while True:
    try:
        item = l_iter.__next__()
        print(item)
    except StopIteration:
        break

那现在我们就使用while循环实现了原本for循环做的事情,我们是从谁那儿获取一个一个的值呀?是不是就是l_iter?好了,这个l_iter就是一个迭代器。

迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法。

我们来看看range()是个啥。首先,它肯定是一个可迭代的对象,但是它是否是一个迭代器?我们来测试一下

print('__next__' in dir(range(12)))  #查看'__next__'是不是在range()方法执行之后内部是否有__next__
print('__iter__' in dir(range(12)))  #查看'__next__'是不是在range()方法执行之后内部是否有__iter__

from collections import Iterator
print(isinstance(range(100000000),Iterator))  #验证range执行之后得到的结果不是一个迭代器

for循环的本质:循环所有对象,全都是使用迭代器协议。

(字符串,列表,元组,字典,集合,文件对象)这些都不是迭代器,只不过在for循环式,调用了他们内部的__iter__方法,把他们变成了迭代器

然后for循环调用迭代器的__next__方法去取值,而且for循环会捕捉StopIteration异常,以终止迭代

 l=['a','b','c']
 #一:下标访问方式
 print(l[0])
 print(l[1])
 print(l[2])
 # print(l[3])#超出边界报错:IndexError
 
 #二:遵循迭代器协议访问方式
 diedai_l=l.__iter__()
 print(diedai_l.__next__())
 print(diedai_l.__next__())
 print(diedai_l.__next__())
 # print(diedai_l.__next__())#超出边界报错:StopIteration
 
 #三:for循环访问方式
 #for循环l本质就是遵循迭代器协议的访问方式,先调用diedai_l=l.__iter__()方法,或者直接diedai_l=iter(l),然后依次执行diedai_l.next(),直到for循环捕捉到StopIteration终止循环
  #for循环所有对象的本质都是一样的原理
 
 for i in l:#diedai_l=l.__iter__()
     print(i) #i=diedai_l.next()
 
 #四:用while去模拟for循环做的事情
 diedai_l=l.__iter__()
 while True:
     try:
         print(diedai_l.__next__())
     except StopIteration:
         print('迭代完毕了,循环终止了')
         break

序列类型:字符串,列表,元组都有下标,你用上述的方式访问,perfect!但是你可曾想过非序列类型:像字典,集合,文件对象的感受,所以嘛,年轻人,for循环就是基于迭代器协议提供了一个统一的可以遍历所有对象的方法,即在遍历之前,先调用对象的__iter__方法将其转换成一个迭代器,然后使用迭代器协议去实现循环访问,这样所有的对象就都可以通过for循环来遍历了

二.生成器

Python中提供的生成器:

1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行

2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表

生成器Generator:

  本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)

  特点:惰性运算,开发者自定义

生成器函数

一个包含yield关键字的函数就是一个生成器函数。yield可以为我们从函数中返回值,但是yield又不同于return,return的执行意味着程序的结束,调用生成器函数不会得到返回的具体的值,而是得到一个可迭代的对象。每一次获取这个可迭代对象的值,就能推动函数的执行,获取新的返回值。直到函数执行结束。

import time
def genrator_fun1():
    a = 1
    print('现在定义了a变量')
    yield a
    b = 2
    print('现在又定义了b变量')
    yield b

g1 = genrator_fun1()
print('g1 : ',g1)       #打印g1可以发现g1就是一个生成器
print('-'*20)   #我是华丽的分割线
print(next(g1))
time.sleep(1)   #sleep一秒看清执行过程
print(next(g1))

生成器有什么好处呢?就是不会一下子在内存中生成太多数据

假如我想让工厂给学生做校服,生产2000000件衣服,我和工厂一说,工厂应该是先答应下来,然后再去生产,我可以一件一件的要,也可以根据学生一批一批的找工厂拿。 而不能是一说要生产2000000件衣服,工厂就先去做生产2000000件衣服,等回来做好了,学生都毕业了。。

def produce():
    """生产衣服"""
    for i in range(2000000):
        yield "生产了第%s件衣服"%i

product_g = produce()
print(product_g.__next__()) #要一件衣服
print(product_g.__next__()) #再要一件衣服
print(product_g.__next__()) #再要一件衣服
num = 0
for i in product_g:         #要一批衣服,比如5件
    print(i)
    num +=1
    if num == 5:
        break

#到这里我们找工厂拿了8件衣服,我一共让我的生产函数(也就是produce生成器函数)生产2000000件衣服。
#剩下的还有很多衣服,我们可以一直拿,也可以放着等想拿的时候再拿

更多应用

import time


def tail(filename):
    f = open(filename)
    f.seek(0, 2) #从文件末尾算起
    while True:
        line = f.readline()  # 读取文件中新的文本行
        if not line:
            time.sleep(0.1)
            continue
        yield line

tail_g = tail('tmp')
for line in tail_g:
    print(line)
def averager():
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield average
        total += term
        count += 1
        average = total/count


g_avg = averager()
next(g_avg)
print(g_avg.send(10))
print(g_avg.send(30))
print(g_avg.send(5))
def init(func):  #在调用被装饰生成器函数的时候首先用next激活生成器
    def inner(*args,**kwargs):
        g = func(*args,**kwargs)
        next(g)
        return g
    return inner

@init
def averager():
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield average
        total += term
        count += 1
        average = total/count


g_avg = averager()
# next(g_avg)   在装饰器中执行了next方法
print(g_avg.send(10))
print(g_avg.send(30))
print(g_avg.send(5))

yield from

def gen1():
    for c in 'AB':
        yield c
    for i in range(3):
        yield i

print(list(gen1()))

def gen2():
    yield from 'AB'
    yield from range(3)

print(list(gen2()))

列表推导式和生成器表达式

#老男孩由于峰哥的强势加盟很快走上了上市之路,alex思来想去决定下几个鸡蛋来报答峰哥

egg_list=['鸡蛋%s' %i for i in range(10)] #列表解析

#峰哥瞅着alex下的一筐鸡蛋,捂住了鼻子,说了句:哥,你还是给我只母鸡吧,我自己回家下

laomuji=('鸡蛋%s' %i for i in range(10))#生成器表达式
print(laomuji)
print(next(laomuji)) #next本质就是调用__next__
print(laomuji.__next__())
print(next(laomuji))

总结:

1.把列表解析的[]换成()得到的就是生成器表达式

2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存

3.Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。例如, sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,所以,我们可以直接这样计算一系列值的和:

sum(x ** 2 for x in xrange(4))

而不用多此一举的先构造一个列表:

sum([x ** 2 for x in xrange(4)]) 

本章小结

可迭代对象:

  拥有__iter__方法

  特点:惰性运算

  例如:range(),str,list,tuple,dict,set

迭代器Iterator:

  拥有__iter__方法和__next__方法

  例如:iter(range()),iter(str),iter(list),iter(tuple),iter(dict),iter(set),reversed(list_o),map(func,list_o),filter(func,list_o),file_o

生成器Generator:

  本质:迭代器,所以拥有__iter__方法和__next__方法

  特点:惰性运算,开发者自定义

使用生成器的优点:

延迟计算,一次返回一个结果。也就是说,它不会一次生成所有的结果,这对于大数据量处理,将会非常有用。

#列表解析
sum([i for i in range(100000000)])#内存占用大,机器容易卡死
 
#生成器表达式
sum(i for i in range(100000000))#几乎不占内存

有效提高代码可读性