NDArray自动求导

时间:2022-04-22
本文章向大家介绍NDArray自动求导,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

NDArray可以很方便的求解导数,比如下面的例子:(代码主要参考自https://zh.gluon.ai/chapter_crashcourse/autograd.html

 用代码实现如下:

 1 import mxnet.ndarray as nd
 2 import mxnet.autograd as ag
 3 x = nd.array([[1,2],[3,4]])
 4 print(x)
 5 x.attach_grad() #附加导数存放的空间
 6 with ag.record():
 7     y = 2*x**2
 8 y.backward() #求导
 9 z = x.grad #将导数结果(也是一个矩阵)赋值给z
10 print(z) #打印结果
[[ 1.  2.]
 [ 3.  4.]]
<NDArray 2x2 @cpu(0)>

[[  4.   8.]
 [ 12.  16.]]
<NDArray 2x2 @cpu(0)>

对控制流求导

NDArray还能对诸如if的控制分支进行求导,比如下面这段代码:

1 def f(a):
2     if nd.sum(a).asscalar()<15: #如果矩阵a的元数和<15
3         b = a*2 #则所有元素*2
4     else:
5         b = a 
6     return b

数学公式等价于:

这样就转换成本文最开头示例一样,变成单一函数求导,显然导数值就是x前的常数项,验证一下:

import mxnet.ndarray as nd
import mxnet.autograd as ag

def f(a):
    if nd.sum(a).asscalar()<15: #如果矩阵a的元数和<15
        b = a*2 #则所有元素平方
    else:
        b = a 
    return b

#注:1+2+3+4<15,所以进入b=a*2的分支
x = nd.array([[1,2],[3,4]])
print("x1=")
print(x)
x.attach_grad()
with ag.record():
    y = f(x)
print("y1=")
print(y)
y.backward() #dy/dx = y/x 即:2
print("x1.grad=")
print(x.grad)


x = x*2
print("x2=")
print(x)
x.attach_grad()
with ag.record():
    y = f(x)
print("y2=")
print(y)
y.backward()
print("x2.grad=")
print(x.grad)
x1=
[[ 1.  2.]
 [ 3.  4.]]
<NDArray 2x2 @cpu(0)>
y1=
[[ 2.  4.]
 [ 6.  8.]]
<NDArray 2x2 @cpu(0)>
x1.grad=
[[ 2.  2.]
 [ 2.  2.]]
<NDArray 2x2 @cpu(0)>
x2=
[[ 2.  4.]
 [ 6.  8.]]
<NDArray 2x2 @cpu(0)>
y2=
[[ 2.  4.]
 [ 6.  8.]]
<NDArray 2x2 @cpu(0)>
x2.grad=
[[ 1.  1.]
 [ 1.  1.]]
<NDArray 2x2 @cpu(0)>

头梯度

原文上讲得很含糊,其实所谓头梯度,就是一个求导结果前的乘法系数,见下面代码:

 1 import mxnet.ndarray as nd
 2 import mxnet.autograd as ag
 3 
 4 x = nd.array([[1,2],[3,4]])
 5 print("x=")
 6 print(x)
 7 
 8 x.attach_grad()
 9 with ag.record():
10     y = 2*x*x
11 
12 head = nd.array([[10, 1.], [.1, .01]]) #所谓的"头梯度"
13 print("head=")
14 print(head)
15 y.backward(head_gradient) #用头梯度求导
16 
17 print("x.grad=")
18 print(x.grad) #打印结果
x=
[[ 1.  2.]
 [ 3.  4.]]
<NDArray 2x2 @cpu(0)>
head=
[[ 10.     1.  ]
 [  0.1    0.01]]
<NDArray 2x2 @cpu(0)>
x.grad=
[[ 40.           8.        ]
 [  1.20000005   0.16      ]]
<NDArray 2x2 @cpu(0)>

对比本文最开头的求导结果,上面的代码仅仅多了一个head矩阵,最终的结果,其实就是在常规求导结果的基础上,再乘上head矩阵(指:数乘而非叉乘)

链式法则

先复习下数学

注:最后一行中所有变量x,y,z都是向量(即:矩形),为了不让公式看上去很凌乱,就统一省掉了变量上的箭头。NDArray对复合函数求导时,已经自动应用了链式法则,见下面的示例代码:

 1 import mxnet.ndarray as nd
 2 import mxnet.autograd as ag
 3 
 4 x = nd.array([[1,2],[3,4]])
 5 print("x=")
 6 print(x)
 7 
 8 x.attach_grad()
 9 with ag.record():
10     y = x**2
11     z = y**2 + y
12 
13 z.backward()
14 
15 print("x.grad=")
16 print(x.grad) #打印结果
17 
18 print("w=")
19 w = 4*x**3 + 2*x
20 print(w) # 验证结果
x=
[[ 1.  2.]
 [ 3.  4.]]
<NDArray 2x2 @cpu(0)>
x.grad=
[[   6.   36.]
 [ 114.  264.]]
<NDArray 2x2 @cpu(0)>
w=
[[   6.   36.]
 [ 114.  264.]]
<NDArray 2x2 @cpu(0)>