广义加性模型(GAMs)

时间:2022-09-23
本文章向大家介绍广义加性模型(GAMs),主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

作为回归家族的一个扩展,广义加性模型(GAMs)是最强大的模型之一,可以为任何回归问题建模!!

线性模型简单、直观、便于理解,但是,在现实生活中,变量的作用通常不是线性的,线性假设很可能不能满足实际需求,甚至直接违背实际情况。1985 年 Stone 提出加性模型 (additive models) ,模型中每一个加性项使用单个光滑函数来估计,在每一加性项中可以解释因变量如何随自变量变化而变化,解决了模型中自变量数目较多时 ,模型的估计方差会加大的问题。1990 年,Hastie 和 Tibshirani 扩展了加性模型的应用范围 ,提出了广义加性模型(generalized additive models)。

你一定用过线性回归或者多项式回归但说实话,所以让我们先从线性回归方程开始:

y = ax₁+ bx₂ + cx₃+ …+ zxₙ+ C

广义加性模型(GAMs)是这个样子的:

g(y) = w₁F₁(x₁) + w₂F₂(x₂) + w₃F₃(x₃) …wₙFₙ(xₙ) + C

可以看到,除了我们的自变量X被函数嵌套以外,我们的因变量Y也就是预测也不是“ y”本身而是一个函数g(y)。而w₁,w₂…wₙ是每个自变量函数的权重

完整文章

https://avoid.overfit.cn/post/ef3f8a5743d84b4d879b74cd92bb12d5

原文地址:https://www.cnblogs.com/deephub/p/16721811.html