Globally-Robust Neural Networks

时间:2021-07-22
本文章向大家介绍Globally-Robust Neural Networks,主要包括Globally-Robust Neural Networks使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

Leino K., Wang Z. and Fredrikson M. Globally-robust neural networks. In International Conference on Machine Learning (ICML), 2021.

本文是一种可验证的鲁棒方法, 并且提出了一种globally-robust的概念, 但是实际看下来并不觉得有特别出彩的地方.

主要内容

对于网络\(f : \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\), 其中\(m\)表示共有m个不同的类别. 则prediction可以表示为

\[F(x) = \mathop{\arg \max} \limits_{i} f_i(x). \]

普通的local robustness采用如下方式定义:

\(F\)被称为在点\(x\)满足\(\epsilon\)-locally-robust, 当对于任意的样本\(x'\)满足

\[\|x'-x\| \Rightarrow F(x) = F(x'). \]

这种定义方式并不恰当, 因为倘若这个性质对于所有的点都成立, 那么所有的样本都会被判定为同一个类别, 从而得到的是一个退化的\(F\).

作者给出的globally-robust的定义是可以对于所有\(x\)有效的.
首先假设一个新的类别\(\perp\), 以及关系

\[c_1 \mathop{=}\limits^{\perp} c_2, \]

当且仅当

\[c_1 = c_2 | c_1=\perp | c_2 = \perp . \]

则globally-robust是这么定义的:
\(F\)\(\epsilon\)-globally-robust的, 如果对于任意的\(x_1, x_2\), 有下列推论成立

\[\|x_1 - x_2\| \le \epsilon \Rightarrow F(x_1) \mathop{=}\limits^{\perp} F(x_2). \]

换言之, \(F\)关于所有点的预测, 要么其是locally-robust, 要么是属于\(\perp\)的, 故可以将\(\perp\)理解为所有不满足locally-robust的点.

接下来作者给出了这样模型的构造方法:
假设

\[\frac{|f_i(x_1) - f_i(x_2)|}{\|x_1 - x_2\|} \le K_i, i=1,2,\cdots, m, \]

\(f_i\)的全局Lipschitz常数为\(K_i\).

\[y_i = f_i(x), j=F(x), \]

定义

\[y_{\perp} = \max_{i\not= j} \{y_i + (K_i + K_j) \epsilon \}. \]

背后的直觉是, 根据Lipschitz常数的性质, 有

\[y_i -K_i \epsilon \le f_i (x') \le y_i + K_i \epsilon, \\ y_j -K_j \epsilon \le f_j (x') \le y_j + K_j \epsilon, \]

所以

\[f_i(x') - f_j(x') \le y_i + (K_i + K_j) \epsilon -y_j = y_{\perp} - y_j. \]

所以\(y_{\perp}\)反映了最坏的情况, 如果\(y_{\perp} > y_j\), 便有可能存在\(x', \|x'-x\| \le \epsilon\), 但是\(F(x') \not= F(x)\).
当然了, 这个是一个非常宽泛的情况.
进一步定义:

\[\bar{f}_i^{\epsilon} (x) = f_i(x), i =1,2,\cdots, m, \\ \bar{f}_{\perp}^{\epsilon}(x) = y_{\perp}, \]

所以最后的模型是:

\[\bar{F}^{\epsilon}(x) = \mathop{\arg \max} \limits_{i, \perp} \bar{f}_{*}^{\epsilon}(x). \]

并由如下的性质:

定理1: 如果\(\bar{F}^{\epsilon}(x) \not = \perp\), 则 \(\bar{F}^{\epsilon}(x) = F(x)\), 且\(\bar{F}^{\epsilon}\)\(x\)处是\(\epsilon\)-locally-robust的.

这是显然的, 因为这说明在\(\epsilon\)的ball内, 找出比上面情况更坏的点.

定理2: \(\bar{F}^{\epsilon / 2}(x)\)\(\epsilon\)-globally-robust的.

只需证明不可能存在\(x_1, x_2, \|x_1 - x_2\| \le \epsilon\), \(\bar{F}^{\epsilon/2}(x_1)=c_1\not= c_2 =\bar{F}^{\epsilon/2}(x_1)\),
根据上面的定理可知:

\[F(x_1) = c_1 \not = c_2 = F(x_2). \]

任取

\[x_3 \in B(x_1, \epsilon /2) \cap B(x_2, \epsilon /2), \]

注: 这里\(B\)是闭球.
则根据定理1有\(F(x_1) = F(x_3) = F(x_2)\), 矛盾.

所以, 我们这么构造的模型就符合作者的定义了, 但是还存在下面的问题:

  1. 全局Lipschitz常数的估计问题: 作者采用简单粗暴的逐层计算并相乘, 放得很宽;
  2. 如果Lipschitz常数过大, 这个模型并不会有效, 显然所有的样本都会被判断为\(\perp\), 作者最后采用的损失函数是TRADES的一个变种:
    \[\mathcal{L}_T(x,y) = \mathcal{L}_{CE}(f(x), y) + \lambda \cdot \mathrm{D}_{KL}(\bar{f}^{\epsilon}(x)\| f(x)). \]

代码

原文代码

原文地址:https://www.cnblogs.com/MTandHJ/p/15045618.html