13-垃圾邮件分类2

时间:2020-05-26
本文章向大家介绍13-垃圾邮件分类2,主要包括13-垃圾邮件分类2使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

1.读取

# 读取数据
def read_dataset():
    sms = open("SMSSpamCollection", 'r', encoding='utf-8')
    sms_label = []  # 标题
    sms_data = []  # 数据
    # 读取csv数据
    csv_reader = csv.reader(sms, delimiter='\t')
    for line in csv_reader:
        sms_label.append(line[0])  # 提取出标签
        sms_data.append(preprocessing(line[1]))  # 对每封邮件做预处理
    sms.close()

2.数据预处理

def get_wordnet_pos(treebank_tag):
    if treebank_tag.startswith('J'):  # 形容词
        return nltk.corpus.wordnet.ADJ
    elif treebank_tag.startswith('V'):  # 动词
        return nltk.corpus.wordnet.VERB
    elif treebank_tag.startswith('N'):  # 名词
        return nltk.corpus.wordnet.NOUN
    elif treebank_tag.startswith('R'):  # 副词
        return nltk.corpus.wordnet.ADV
    else:
        return nltk.corpus.wordnet.NOUN

# 数据预处理
def preprocessing(text):
    tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  # 分词
    stops = stopwords.words('english')  # 使用英文的停用词表
    tokens = [token for token in tokens if token not in stops]  # 停用词
    tokens = [token.lower() for token in tokens if len(token) >= 3]  # 大小写、长度<3

    tag = nltk.pos_tag(tokens)  # 词性
    lmtzr = WordNetLemmatizer()
    tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  # 词性还原
    preprocessed_text = ' '.join(tokens)
    return preprocessed_text

3.数据划分—训练集和测试集数据划分

from sklearn.model_selection import train_test_split

x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

# 划分数据集
def split_dataset(data, label):
    x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)

4.文本特征提取

sklearn.feature_extraction.text.CountVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

sklearn.feature_extraction.text.TfidfVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf2 = TfidfVectorizer()

观察邮件与向量的关系

向量还原为邮件


# 把原始文本转化为tf-idf的特征矩阵
def tfidf_dataset(x_train, x_test):
    tfidf = TfidfVectorizer()
    X_train = tfidf.fit_transform(x_train)  # X_train用fit_transform生成词汇表
    X_test = tfidf.transform(x_test)  # X_test要与X_train词汇表相同,因此在X_train进行fit_transform基础上进行transform操作
    return X_train, X_test, tfidf


# 向量还原邮件
def revert_mail(x_train, X_train, model):
    s = X_train.toarray()[0]
    print("第一封邮件向量表示为:", s)
    # 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
    a = np.flatnonzero(X_train.toarray()[0])  # 非零元素的位置(index)
    print("非零元素的位置:", a)
    print("向量的非零元素的值:", s[a])
    b = model.vocabulary_  # 词汇表
    key_list = []
    for key, value in b.items():
        if value in a:
            key_list.append(key)  # key非0元素对应的单词
    print("向量非零元素对应的单词:", key_list)
    print("向量化之前的邮件:", x_train[0])

结果:

4.模型选择

from sklearn.naive_bayes import GaussianNB

from sklearn.naive_bayes import MultinomialNB

说明为什么选择这个模型?

# 模型选择(根据数据特点选择多项式分布)
def mnb_model(x_train, x_test, y_train, y_test):
    mnb = MultinomialNB()
    mnb.fit(x_train, y_train)
    ypre_mnb = mnb.predict(x_test)
    print("总数:", len(y_test))
    print("预测正确数:", (ypre_mnb == y_test).sum())
    return ypre_mnb

结果:

 根据邮件分类的情况上看,数据呈现的是多元离散值,不是连续值,是单词出现的频率,概率性的数据,且并不符合正态分布的规则,所以选择多项式贝叶斯模型。

5.模型评价:混淆矩阵,分类报告

from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_predict)

说明混淆矩阵的含义

from sklearn.metrics import classification_report

说明准确率、精确率、召回率、F值分别代表的意义 

# 模型评价:混淆矩阵,分类报告
def class_report(ypre_mnb, y_test):
    conf_matrix = confusion_matrix(y_test, ypre_mnb)
    print("混淆矩阵:\n", conf_matrix)
    c = classification_report(y_test, ypre_mnb)
    print("分类报告:\n", c)
    print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix))

结果:

(1)混淆矩阵的含义:

真阳性(True Positive,TP):样本的真实类别是正例,并且模型预测的结果也是正例(966)

真阴性(True Negative,TN):样本的真实类别是负例,并且模型将其预测成为负例(109)

假阳性(False Positive,FP):样本的真实类别是负例,但是模型将其预测成为正例(0)

假阴性(False Negative,FN):样本的真实类别是正例,但是模型将其预测成为负例(49)

(2)准确率:被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好。(TP+TN)/总

(3)精确率:表示被分为正例的示例中实际为正例的比例。 TP/(TP+FP)

(4)召回率 :召回率是覆盖面的度量,度量有多个正例被分为正例。TP/(TP+FN)

(5)F值 : 精确率 * 召回率 * 2 / ( 精确率 + 召回率) 。F值就是准确率(P)和召回率(R)的加权调和平均。

6.比较与总结

如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

 CountVectorizer:只考虑每个单词出现的频率;然后构成一个特征矩阵,每一行表示一个训练文本的词频统计结果。

 TfidfVectorizer:除了考量某词汇在本文本出现的频率,还关注包含这个词汇的其它文本的数量。

 相比之下,训练文本的数量越多,TfidfVectorizer这种特征量化方式就更有优势,而且TfidfVectorizer可以削减高频没有意义的词汇,应用于实际更有意义,实际效果也会更好。

原文地址:https://www.cnblogs.com/wh008/p/12964764.html