信号分解 - PyEMD

时间:2020-04-17
本文章向大家介绍信号分解 - PyEMD,主要包括信号分解 - PyEMD使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

安装:pip install EMD-signal

文档:https://pyemd.readthedocs.io/en/latest/

 

我大概看了原理,看的不是特别明白,只记录一下我觉得有用的地方

 

EMD,经验模态分解,是一种信号分解的技术;

它提出了一个概念叫 基本模态分量 IMF,

EMD 用于处理非平稳信号,可用于任意数据,基于数据本身进行分解;

EMD 把一个信号分解成 多个 IMF,每个 IMF 具有线性和非线性的特点,还有一个 信号残余分量,常常代表信号的直流分量或者信号的趋势;

EMD 分解得到的 IMF,频率逐渐降低,尺度各不相同;

EMD 分解得到的前几个模态分量,通常集中了原始信号中最显著、最重要的信息; 

 

EMD 分解容易造成 模态混合,表现为下列现象之一:

1. 在同一个 IMF 中,尺度分布范围很宽却又各不相同的信号;

2. 在不同 IMF 中,存在尺度相近的信号;

模态混合使得 IMF 失去单一特征尺度,形成尺度混杂的震荡,失去原有的物理意义

 

EEMD,集合经验模态分解,解决了 EMD 模态混合的现象

 

Python EMD 用法

##### 基本用法
import numpy as np
from PyEMD import EMD
import pylab as plt

s = np.random.random(100)
emd = EMD()
IMFs = emd.emd(s)


##### 示例
# Define signal
t = np.linspace(0, 1, 200)
s = np.cos(11*2*np.pi*t*t) + 6*t*t

# Execute EMD on signal
IMF = EMD().emd(s,t)
N = IMF.shape[0]+1

# Plot results
plt.subplot(N,1,1)
plt.plot(t, s, 'r')
plt.title("Input signal: $S(t)=cos(22\pi t^2) + 6t^2$")
plt.xlabel("Time [s]")

for n, imf in enumerate(IMF):
    plt.subplot(N,1,n+2)
    plt.plot(t, imf, 'g')
    plt.title("IMF "+str(n+1))
    plt.xlabel("Time [s]")

plt.tight_layout()
plt.savefig('simple_example')
plt.show()

输出

 

Python EEMD 用法

from PyEMD import EEMD
import numpy as np
import pylab as plt


def main():
    # Define signal
    t = np.linspace(0, 1, 200)

    sin = lambda x,p: np.sin(2*np.pi*x*t+p)
    S = 3*sin(18,0.2)*(t-0.2)**2
    S += 5*sin(11,2.7)
    S += 3*sin(14,1.6)
    S += 1*np.sin(4*2*np.pi*(t-0.8)**2)
    S += t**2.1 -t

    # Assign EEMD to `eemd` variable
    eemd = EEMD()

    # Say we want detect extrema using parabolic method
    # emd = eemd.EMD
    # emd.extrema_detection="parabol"
    # eemd.trials = 50
    # eemd.noise_seed(12345)

    # Execute EEMD on S
    eIMFs = eemd.eemd(S, t, -1)
    nIMFs = eIMFs.shape[0]

    # Plot results
    plt.figure(figsize=(12,9))
    plt.subplot(nIMFs+1, 1, 1)
    plt.plot(t, S, 'r')

    for n in range(nIMFs):
        plt.subplot(nIMFs+1, 1, n+2)
        plt.plot(t, eIMFs[n], 'g')
        plt.ylabel("eIMF %i" %(n+1))
        plt.locator_params(axis='y', nbins=5)

    plt.xlabel("Time [s]")
    plt.tight_layout()
    plt.savefig('eemd_example', dpi=120)
    plt.show()


if __name__ == '__main__':
    main()

 

 

 

 

参考资料:

https://www.cnblogs.com/RoseVorchid/p/12030980.html  EEMD算法python实现,原理讲得不咋地

http://www.360doc.com/content/19/0806/12/41357686_853284987.shtml#  EEMD 原理

https://www.cnblogs.com/mikawong/p/7682467.html  记录了 PyEMD 的一些资源链接

 

《Adaboost_SVM集成模型的滚动轴承早期故障诊断》  电子书

$flag 上一页 下一页