ZR#959

时间:2019-09-09
本文章向大家介绍ZR#959,主要包括ZR#959使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

ZR#959

解法:

对于一个询问,设路径 $ (u, v) $ 经过的所有边的 $ gcd $ 为 g,这可以倍增求出。
考虑 $ g $ 的所有质因子 $ p1, p2, \cdots , pk $ ,因为 $ g \leq 10^6 $ ,所以 $ k \leq 7 $ 。
则最终的路径的 $ gcd $ 为 $ 1 $,等价于对于每个 $ 1 \leq i \leq k $ ,存在至少一条路径上的边不是 $ p_i $ 的倍数。我们要求 $ l $ 的最小值,即等价于对于每个 $ 1 \leq i \leq k $ ,计算出最长的不满足条件的 $ l′ $,则最终答案即为所有 $ i $ 对应的 $ l′ $ 的最大值加一(无解的情况除外)。
考虑对于某个 pi 而言,我们如何求出这样的 $ l′ $ 。我们考虑将所有满足 $ p_i | w $的边拿出来,并只保留这些边。则 $ l′ $ 等价于在这样得到的森林中,经过 $ (u, v) $ 的最长路径。
使用简单的树形DP即可求出某个点向子树方向以及向祖先方向延伸的最长路径,分类讨论即可对于每个 $ (u, v) $ 求出对应的 $ l′ $ 。
接下来考虑无解的情况。事实上,无解等价于刚刚求出的某个 $ l′ $ 和经过 $ (u, v) $ 的最长路径相同。经过 $ (u, v) $ 的最长路径和刚刚是同样的问题,直接对整棵树都做一遍树形 DP 即可。
接下来考虑复杂度。求出每个询问的 $ gcd $ 的复杂度为 $ O(q \log_2 n \log_2 w) $ ,而求出最长路的部分是与边数成线性的,而每条边至多出现 7 次,因此该做法的总复杂度即为 $ O(q \log_2 n \log_2 w + nω(w)) $ 。

CODE:

//待补充

原文地址:https://www.cnblogs.com/Repulser/p/11494359.html