吴恩达《机器学习》第一周笔记

时间:2019-09-13
本文章向大家介绍吴恩达《机器学习》第一周笔记,主要包括吴恩达《机器学习》第一周笔记使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

@

1. 引言(Introduction)

1.1 Welcome

随着互联网数据不断累积,硬件不断升级迭代,在这个信息爆炸的时代,机器学习已被应用在各行各业中,可谓无处不在。

一些常见的机器学习的应用,例如:

  • 手写识别
  • 垃圾邮件分类
  • 搜索引擎
  • 图像处理

使用到机器学习的一些案例:

  • 数据挖掘
    • 网页点击流数据分析
  • 人工无法处理的工作(量大)
    • 手写识别
    • 计算机视觉
  • 个人定制
    • 推荐系统
  • 研究大脑
  • ……

1.2 什么是机器学习(What is Machine Learning)

  1. 机器学习定义
    这里主要有两种定义:
  • Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

    这个定义有点不正式但提出的时间最早,来自于一个懂得计算机编程的下棋菜鸟。他编写了一个程序,但没有显式地编程每一步该怎么走,而是让计算机自己和自己对弈,并不断地计算布局的好坏,来判断什么情况下获胜的概率高,从而积累经验,好似学习,最后,这个计算机程序成为了一个比他自己还厉害的棋手。

  • Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

    Tom Mitchell 的定义更为现代和正式。在过滤垃圾邮件这个例子中,电子邮件系统会根据用户对电子邮件的标记(是/不是垃圾邮件)不断学习,从而提升过滤垃圾邮件的准确率,定义中的三个字母分别代表:

    • T(Task): 过滤垃圾邮件任务。
    • P(Performance): 电子邮件系统过滤垃圾邮件的准确率。
    • E(Experience): 用户对电子邮件的标记。
  1. 机器学习算法

    主要有两种机器学习的算法分类

    1. 监督学习
    2. 无监督学习

    两者的区别为是否需要人工参与数据结果的标注。这两部分的内容占比很大,并且很重要,掌握好了可以在以后的应用中节省大把大把的时间~

    还有一些算法也属于机器学习领域,诸如:

    • 半监督学习: 介于监督学习于无监督学习之间
    • 推荐算法: 没错,就是那些个买完某商品后还推荐同款的某购物网站所用的算法。
    • 强化学习: 通过观察来学习如何做出动作,每个动作都会对环境有所影响,而环境的反馈又可以引导该学习算法。
    • 迁移学习

1.3 监督学习(Supervised Learning)

监督学习,即为教计算机如何去完成预测任务(有反馈),预先给一定数据量的输入和对应的结果即训练集,建模拟合,最后让计算机预测未知数据的结果。

监督学习一般有两种:

  1. 回归问题(Regression)

    回归问题即为预测一系列的连续值

    在房屋价格预测的例子中,给出了一系列的房屋面基数据,根据这些数据来预测任意面积的房屋价格。给出照片-年龄数据集,预测给定照片的年龄。

  1. 分类问题(Classification)

    分类问题即为预测一系列的离散值

    即根据数据预测被预测对象属于哪个分类。

    视频中举了癌症肿瘤这个例子,针对诊断结果,分别分类为良性或恶性。还例如垃圾邮件分类问题,也同样属于监督学习中的分类问题。

视频中提到支持向量机这个算法,旨在解决当特征量很大的时候(特征即如癌症例子中的肿块大小,颜色,气味等各种特征),计算机内存一定会不够用的情况。支持向量机能让计算机处理无限多个特征。

1.4 无监督学习(Unsupervised Learning)

相对于监督学习,训练集不会有人为标注的结果(无反馈),我们不会给出结果或无法得知训练集的结果是什么样,而是单纯由计算机通过无监督学习算法自行分析,从而“得出结果”。计算机可能会把特定的数据集归为几个不同的簇,故叫做聚类算法。

无监督学习一般分为两种:

  1. 聚类(Clustering)
    • 新闻聚合
    • DNA 个体聚类
    • 天文数据分析
    • 市场细分
    • 社交网络分析
  2. 非聚类(Non-clustering)
    • 鸡尾酒问题

新闻聚合

在例如谷歌新闻这样的网站中,每天后台都会收集成千上万的新闻,然后将这些新闻分组成一个个的新闻专题,这样一个又一个聚类,就是应用了无监督学习的结果。

鸡尾酒问题

在鸡尾酒会上,大家说话声音彼此重叠,几乎很难分辨出面前的人说了什么。我们很难对于这个问题进行数据标注,而这里的通过机器学习的无监督学习算法,就可以将说话者的声音同背景音乐分离出来,看视频,效果还不错呢~~。

嗯,这块是打打鸡血的,只需要一行代码就解决了问题,就是这么简单!当然,我没复现过 ^_^……

神奇的一行代码:
[W,s,v] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');

编程语言建议

在机器学习刚开始时,推荐使用 Octave 类的工程计算编程软件,因为在 C++ 或 Java 等编程语言中,编写对应的代码需要用到复杂的库以及要写大量的冗余代码,比较耗费时间,建议可以在学习过后再考虑使用其他语言来构建系统。
另外,在做原型搭建的时候也应该先考虑使用类似于 Octave 这种便于计算的编程软件,当其已经可以工作后,才将模型移植到其他的高级编程语言中。

注:Octave 与 MATLAB 语法相近,由于 MATLAB 为商业软件,课程中使用开源且免费的 Octave。

机器学习领域发展迅速,现在也可使用 Tensorflow 等开源机器学习框架编写机器学习代码,这些框架十分友好,易于编写及应用。

2 单变量线性回归(Linear Regression with One Variable)

2.1 模型表示(Model Representation)

  1. 房价预测训练集
Size in $feet^2$ ($x$) Price ($) in 1000's($y$)
2104 460
1416 232
1534 315
852 178
... ...

房价预测训练集中,同时给出了输入 $x$ 和输出结果 $y$,即给出了人为标注的”正确结果“,且预测的量是连续的,属于监督学习中的回归问题。

  1. 问题解决模型

[外链图片转存失败(img-kjB3RLia-1568369880643)(images/20180105_212048.png)]

其中 $h$ 代表结果函数,也称为假设(hypothesis) 。假设函数根据输入(房屋的面积),给出预测结果输出(房屋的价格),即是一个 $X\to Y$ 的映射。

$h_\theta(x)=\theta_0+\theta_1x$,为解决房价问题的一种可行表达式。

$x$: 特征/输入变量。

上式中,$\theta$ 为参数,$\theta$ 的变化才决定了输出结果,不同以往,这里的 $x$ 被我们视作已知(不论是数据集还是预测时的输入),所以怎样解得 $\theta$ 以更好地拟合数据,成了求解该问题的最终问题。

单变量,即只有一个特征(如例子中房屋的面积这个特征)。

2.2 代价函数(Cost Function)

李航《统计学习方法》一书中,损失函数与代价函数两者为同一概念,未作细分区别,全书没有和《深度学习》一书一样混用,而是统一使用损失函数来指代这类类似概念。

吴恩达(Andrew Ng)老师在其公开课中对两者做了细分。如果要听他的课做作业,不细分这两个概念是会被打小手扣分的!这也可能是因为老师发现了业内混用的乱象,想要治一治吧。

损失函数(Loss/Error Function): 计算单个样本的误差。

代价函数(Cost Function): 计算整个训练集所有损失函数之和的平均值

我们的目的在于求解预测结果 $h$ 最接近于实际结果 $y$ 时 $\theta$ 的取值,则问题可表达为求解 $\sum\limits_{i=0}^{m}(h_\theta(x^{(i)})-y^{(i)})$ 的最小值

$m$: 训练集中的样本总数

$y$: 目标变量/输出变量

$\left(x, y\right)$: 训练集中的实例

$\left(x^{\left(i\right)},y^{\left(i\right)}\right)$: 训练集中的第 $i$ 个样本实例

[外链图片转存失败(img-VyozXzkj-1568369880643)(images/20180105_224648.png)]

上图展示了当 $\theta$ 取不同值时,$h_\theta\left(x\right)$ 对数据集的拟合情况,蓝色虚线部分代表建模误差(预测结果与实际结果之间的误差),我们的目标就是最小化所有误差之和。

为了求解最小值,引入代价函数(Cost Function)概念,用于度量建模误差。考虑到要计算最小值,应用二次函数对求和式建模,即应用统计学中的平方损失函数(最小二乘法):

$$J(\theta_0,\theta_1)=\dfrac{1}{2m}\displaystyle\sum_{i=1}^m\left(\hat{y}{i}-y{i} \right)^2=\dfrac{1}{2m}\displaystyle\sum_{i=1}^m\left(h_\theta(x_{i})-y_{i}\right)^2$$

$\hat{y}$: $y$ 的预测值

系数 $\frac{1}{2}$ 存在与否都不会影响结果,这里是为了在应用梯度下降时便于求解,平方的导数会抵消掉 $\frac{1}{2}$ 。

讨论到这里,我们的问题就转化成了求解 $J\left( \theta_0, \theta_1 \right)$ 的最小值

2.3 代价函数 - 直观理解1(Cost Function - Intuition I)

根据上节视频,列出如下定义:

  • 假设函数(Hypothesis): $h_\theta(x)=\theta_0+\theta_1x$
  • 参数(Parameters): $\theta_0, \theta_1$
  • 代价函数(Cost Function): $J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}$
  • 目标(Goal): $\underset{\theta_0, \theta_1}{\text{minimize}} J \left(\theta_0, \theta_1 \right)$

为了直观理解代价函数到底是在做什么,先假设 $\theta_1 = 0$,并假设训练集有三个数据,分别为$\left(1, 1\right), \left(2, 2\right), \left(3, 3\right)$,这样在平面坐标系中绘制出 $h_\theta\left(x\right)$ ,并分析 $J\left(\theta_0, \theta_1\right)​$ 的变化。

右图 $J\left(\theta_0, \theta_1\right)$ 随着 $\theta_1$ 的变化而变化,可见当 $\theta_1 = 1$ 时,$J\left(\theta_0, \theta_1 \right) = 0$,取得最小值,对应于左图青色直线,即函数 $h$ 拟合程度最好的情况。

2.4 代价函数 - 直观理解2(Cost Function - Intuition II)

注:该部分由于涉及到了多变量成像,可能较难理解,要求只需要理解上节内容即可,该节如果不能较好理解可跳过。

给定数据集:

参数在 $\theta_0$ 不恒为 $0$ 时代价函数 $J\left(\theta\right)$ 关于 $\theta_0, \theta_1$ 的3-D图像,图像中的高度为代价函数的值。

由于3-D图形不便于标注,所以将3-D图形转换为轮廓图(contour plot),下面用轮廓图(下图中的右图)来作直观理解,其中相同颜色的一个圈代表着同一高度(同一 $J\left(\theta\right)$ 值)。

$\theta_0 = 360, \theta_1 =0$ 时:

大概在 $\theta_0 = 0.12, \theta_1 =250$ 时:

上图中最中心的点(红点),近乎为图像中的最低点,也即代价函数的最小值,此时对应 $h_\theta\left(x\right)$ 对数据的拟合情况如左图所示,嗯,一看就拟合的很不错,预测应该比较精准啦。

2.5 梯度下降(Gradient Descent)

在特征量很大的情况下,即便是借用计算机来生成图像,人工的方法也很难读出 $J\left(\theta\right)$ 的最小值,并且大多数情况无法进行可视化,故引入梯度下降(Gradient Descent)方法,让计算机自动找出最小化代价函数时对应的 $\theta$ 值。

梯度下降背后的思想是:开始时,我们随机选择一个参数组合$\left( {\theta_{0}},{\theta_{1}},......,{\theta_{n}} \right)$即起始点,计算代价函数,然后寻找下一个能使得代价函数下降最多的参数组合。不断迭代,直到找到一个局部最小值(local minimum),由于下降的情况只考虑当前参数组合周围的情况,所以无法确定当前的局部最小值是否就是全局最小值(global minimum),不同的初始参数组合,可能会产生不同的局部最小值。

下图根据不同的起始点,产生了两个不同的局部最小值。

视频中举了下山的例子,即我们在山顶上的某个位置,为了下山,就不断地看一下周围下一步往哪走下山比较快,然后就迈出那一步,一直重复,直到我们到达山下的某一处陆地

梯度下降公式:

$\begin{align} & \text{repeat until convergence:} ; \lbrace \newline ; &{{\theta }{j}}:={{\theta }{j}}-\alpha \frac{\partial }{\partial {{\theta }{j}}}J\left( {\theta{0}},{\theta_{1}} \right) \newline \rbrace \end{align}$

${\theta }_{j}$: 第 $j$ 个特征参数

”:=“: 赋值操作符

$\alpha$: 学习速率(learning rate), $\alpha > 0$

$\frac{\partial }{\partial {{\theta }_{j}}}J\left( \theta_0, \theta_1 \right)$: $J\left( \theta_0, \theta_1 \right)$ 的偏导

公式中,学习速率决定了参数值变化的速率即”走多少距离“,而偏导这部分决定了下降的方向即”下一步往哪里“走(当然实际上的走多少距离是由偏导值给出的,学习速率起到调整后决定的作用),收敛处的局部最小值又叫做极小值,即”陆地“。

注意,在计算时要批量更新 $\theta$ 值,即如上图中的左图所示,否则结果上会有所出入,原因不做细究。

2.6 梯度下降直观理解(Gradient Descent Intuition)

该节探讨 $\theta_1$ 的梯度下降更新过程,即 $\theta_1 := \theta_1 - \alpha\frac{d}{d\theta_1}J\left(\theta_1\right)$,此处为了数学定义上的精确性,用的是 $\frac{d}{d\theta_1}J\left(\theta_1\right)$,如果不熟悉微积分学,就把它视作之前的 $\frac{\partial}{\partial\theta}$ 即可。

把红点定为初始点,切于初始点的红色直线的斜率,表示了函数 $J\left(\theta\right)$ 在初始点处有正斜率,也就是说它有正导数,则根据梯度下降公式 ,${{\theta }{j}}:={{\theta }{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( \theta_0, \theta_1 \right)$ 右边的结果是一个正值,即 $\theta_1$ 会向左边移动。这样不断重复,直到收敛(达到局部最小值,即斜率为0)。

初始 $\theta$ 值(初始点)是任意的,若初始点恰好就在极小值点处,梯度下降算法将什么也不做($\theta_1 := \theta_1 - \alpha*0$)。

不熟悉斜率的话,就当斜率的值等于图中三角形的高度除以水平长度好啦,精确地求斜率的方法是求导。

对于学习速率 $\alpha$,需要选取一个合适的值才能使得梯度下降算法运行良好。

  • 学习速率过小图示:

收敛的太慢,需要更多次的迭代。

  • 学习速率过大图示:

可能越过最低点,甚至导致无法收敛。

学习速率只需选定即可,不需要在运行梯度下降算法的时候进行动态改变,随着斜率越来越接近于0,代价函数的变化幅度会越来越小,直到收敛到局部极小值。

如图,品红色点为初始点,代价函数随着迭代的进行,变化的幅度越来越小。

最后,梯度下降不止可以用于线性回归中的代价函数,还通用于最小化其他的代价函数。

2.7 线性回归中的梯度下降(Gradient Descent For Linear Regression)

线性回归模型

  • $h_\theta(x)=\theta_0+\theta_1x$
  • $J\left( \theta_0, \theta_1 \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}​$

梯度下降算法

  • $\begin{align} & \text{repeat until convergence:} ; \lbrace \newline ; &{{\theta }{j}}:={{\theta }{j}}-\alpha \frac{\partial }{\partial {{\theta }{j}}}J\left( {\theta{0}},{\theta_{1}} \right) \newline \rbrace \end{align}$

直接将线性回归模型公式代入梯度下降公式可得出公式

当 $j = 0, j = 1​$ 时,线性回归中代价函数求导的推导过程:

$\frac{\partial}{\partial\theta_j} J(\theta_1, \theta_2)=\frac{\partial}{\partial\theta_j} \left(\frac{1}{2m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}} \right)=$

$\left(\frac{1}{2m}*2\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} \right)*\frac{\partial}{\partial\theta_j}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} =$

$\left(\frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} \right)*\frac{\partial}{\partial\theta_j}{{\left(\theta_0{x_0^{(i)}} + \theta_1{x_1^{(i)}}-{{y}^{(i)}} \right)}}$

所以当 $j = 0$ 时:

$\frac{\partial}{\partial\theta_0} J(\theta)=\frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} *x_0^{(i)}$

所以当 $j = 1$ 时:

$\frac{\partial}{\partial\theta_1} J(\theta)=\frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}} *x_1^{(i)}$

上文中所提到的梯度下降,都为批量梯度下降(Batch Gradient Descent),即每次计算都使用所有的数据集 $\left(\sum\limits_{i=1}^{m}\right)​$ 更新。

由于线性回归函数呈现碗状,且只有一个全局的最优值,所以函数一定总会收敛到全局最小值(学习速率不可过大)。同时,函数 $J$ 被称为凸二次函数,而线性回归函数求解最小值问题属于凸函数优化问题

另外,使用循环求解,代码较为冗余,后面会讲到如何使用向量化(Vectorization)来简化代码并优化计算,使梯度下降运行的更快更好。

3 Linear Algebra Review

这部分,学过线性代数的可以复习一下,比较基础。笔记整理暂留。

3.1 Matrices and Vectors

Octave/Matlab 代码:

% The ; denotes we are going back to a new row.
A = [1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12]

% Initialize a vector 
v = [1;2;3] 

% Get the dimension of the matrix A where m = rows and n = columns
[m,n] = size(A)

% You could also store it this way
dim_A = size(A)

% Get the dimension of the vector v 
dim_v = size(v)

% Now let's index into the 2nd row 3rd column of matrix A
A_23 = A(2,3)

执行结果:

A =

    1    2    3
    4    5    6
    7    8    9
   10   11   12

v =

   1
   2
   3

m =  4
n =  3
dim_A =

   4   3

dim_v =

   3   1

A_23 =  6

3.2 Addition and Scalar Multiplication

Octave/Matlab 代码:

% Initialize matrix A and B 
A = [1, 2, 4; 5, 3, 2]
B = [1, 3, 4; 1, 1, 1]

% Initialize constant s 
s = 2

% See how element-wise addition works
add_AB = A + B 

% See how element-wise subtraction works
sub_AB = A - B

% See how scalar multiplication works
mult_As = A * s

% Divide A by s
div_As = A / s

% What happens if we have a Matrix + scalar?
add_As = A + s

执行结果:

A =

   1   2   4
   5   3   2

B =

   1   3   4
   1   1   1

s =  2
add_AB =

   2   5   8
   6   4   3

sub_AB =

   0  -1   0
   4   2   1

mult_As =

    2    4    8
   10    6    4

div_As =

   0.50000   1.00000   2.00000
   2.50000   1.50000   1.00000

add_As =

   3   4   6
   7   5   4

3.3 Matrix Vector Multiplication

Octave/Matlab 代码:

% Initialize matrix A 
A = [1, 2, 3; 4, 5, 6;7, 8, 9] 

% Initialize vector v 
v = [1; 1; 1] 

% Multiply A * v
Av = A * v

执行结果:

A =

   1   2   3
   4   5   6
   7   8   9

v =

   1
   1
   1

Av =

    6
   15
   24

3.4 Matrix Matrix Multiplication

Octave/Matlab 代码:

% Initialize a 3 by 2 matrix 
A = [1, 2; 3, 4;5, 6]

% Initialize a 2 by 1 matrix 
B = [1; 2] 

% We expect a resulting matrix of (3 by 2)*(2 by 1) = (3 by 1) 
mult_AB = A*B

% Make sure you understand why we got that result

执行结果:

A =

   1   2
   3   4
   5   6

B =

   1
   2

mult_AB =

    5
   11
   17

3.5 Matrix Multiplication Properties

Octave/Matlab 代码:

% Initialize random matrices A and B 
A = [1,2;4,5]
B = [1,1;0,2]

% Initialize a 2 by 2 identity matrix
I = eye(2)

% The above notation is the same as I = [1,0;0,1]

% What happens when we multiply I*A ? 
IA = I*A 

% How about A*I ? 
AI = A*I 

% Compute A*B 
AB = A*B 

% Is it equal to B*A? 
BA = B*A 

% Note that IA = AI but AB != BA

执行结果:

A =

   1   2
   4   5

B =

   1   1
   0   2

I =

Diagonal Matrix

   1   0
   0   1

IA =

   1   2
   4   5

AI =

   1   2
   4   5

AB =

    1    5
    4   14

BA =

    5    7
    8   10

3.6 Inverse and Transpose

Octave/Matlab 代码:

% Initialize matrix A 
A = [1,2,0;0,5,6;7,0,9]

% Transpose A 
A_trans = A' 

% Take the inverse of A 
A_inv = inv(A)

% What is A^(-1)*A? 
A_invA = inv(A)*A

执行结果:

A =

   1   2   0
   0   5   6
   7   0   9

A_trans =

   1   0   7
   2   5   0
   0   6   9

A_inv =

   0.348837  -0.139535   0.093023
   0.325581   0.069767  -0.046512
  -0.271318   0.108527   0.038760

A_invA =

   1.00000  -0.00000   0.00000
   0.00000   1.00000  -0.00000
  -0.00000   0.00000   1.00000

原文地址:https://www.cnblogs.com/wutiantian/p/11517372.html