QuantLib 金融计算——收益率曲线之构建曲线(3)

时间:2019-08-13
本文章向大家介绍QuantLib 金融计算——收益率曲线之构建曲线(3),主要包括QuantLib 金融计算——收益率曲线之构建曲线(3)使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

如果未做特别说明,文中的程序都是 python3 代码。

QuantLib 金融计算——收益率曲线之构建曲线(3)

载入 QuantLib 和其他包:

import QuantLib as ql
import seaborn as sb
import numpy as np
import pandas as pd

print(ql.__version__)
1.15

概述

本文展示利用 quantlib-python 根据样本券的交易数据估算出即期利率的期限结构的完整流程,并指出当前实现所存在的问题。

示例所用的样本券交易数据来自专门进行期限结构分析的 R 包——termstrc。具体来说是数据集 govbonds 中的 GERMANY 部分,包含 2008-01-30 这一天德国市场上 52 只固息债的成交数据。

注意:为了适配 QuantLib,实际计算中删除了两只债券的数据,以保证所有样本券的到期时间均不相同。样本券数据在附录中列出。

估算期限结构的步骤

QuantLib 中估算期限结构的核心流程有两步:

  1. 配置 *Helper 对象,描述样本券信息,包括付息时间表(schedule)、价格(默认用净价)、票息等;
  2. 配置期限结构模型,可以额外提供样本券权重、优化方法、参数正则化条件等参数辅助计算。

读取样本券数据

govBond = pd.read_csv(
    'GERMANY_INFO.csv',
    parse_dates=['MATURITYDATE', 'ISSUEDATE'])

numberOfBonds = govBond.shape[0]

PRICE = [
    ql.QuoteHandle(ql.SimpleQuote(p)) for p in govBond['PRICE']]
MATURITYDATE = [
    ql.Date(m.day, m.month, m.year) for m in govBond['MATURITYDATE']]
ISSUEDATE = [
    ql.Date(i.day, i.month, i.year) for i in govBond['ISSUEDATE']]
COUPONRATE = govBond['COUPONRATE'].values

一些基本配置

# 查看 govbonds 数据集可知样本券均为每年付息一次
frequency = ql.Annual
# termstrc 的日期计算并不如 QuantLib 精细,
# 为了和 termstrc 的算法保持一致,示例使用如下天数计算规则
dc = ql.Actual365Fixed(ql.Actual365Fixed.Standard)
paymentConv = ql.Unadjusted
terminationDateConvention = ql.Unadjusted
convention = ql.Unadjusted
redemption = 100.0
faceAmount = 100.0
# 其实我不知道样本券所在的交易所,
# 所以不确定是不是该用这个日历 :)
calendar = ql.Germany(ql.Germany.Eurex)

# 估值日期 2008-01-30
today = calendar.adjust(ql.Date(30, 1, 2008))
ql.Settings.instance().evaluationDate = today

# 为了和 termstrc 的算法保持一致,示例采用 T+0 交割
bondSettlementDays = 0
bondSettlementDate = calendar.advance(
    today,
    ql.Period(bondSettlementDays, ql.Days))

配置 *Helper 对象

instruments = []

for j in range(numberOfBonds):
    # 配置付息时间表
    schedule = ql.Schedule(
        ISSUEDATE[j],
        MATURITYDATE[j],
        ql.Period(frequency),
        calendar,
        convention,
        terminationDateConvention,
        ql.DateGeneration.Backward,
        False)

    # 配置 Helper 对象
    # 因为样本券均为固息债,所以采用 FixedRateBondHelper 类
    # 对于其他金融工具,需要使用对应的 Helper 类
    helper = ql.FixedRateBondHelper(
        PRICE[j],
        bondSettlementDays,
        faceAmount,
        schedule,
        [COUPONRATE[j]],
        dc,
        paymentConv,
        redemption)

    instruments.append(helper)

配置期限结构

tolerance = 1.0e-6
max = 5000

# 即期利率的 Svensson 模型
sf = ql.SvenssonFitting()
# 即期利率的 Nelson Siegel 模型
nsf = ql.NelsonSiegelFitting()
# 用指数样条函数拟合贴现因子
esf = ql.ExponentialSplinesFitting()
# 用简单多项式函数拟合贴现因子
spf = ql.SimplePolynomialFitting(8)
# 用三次 B-样条函数拟合贴现因子
knots = [-20.0, -10.0, 0.0, 0.25, 0.5, 1, 3, 5, 10, 20, 30, 40, 50]
cbsf = ql.CubicBSplinesFitting(knots)

tsSvensson = ql.FittedBondDiscountCurve(
    bondSettlementDate, instruments, dc,
    sf,
    tolerance, max)

tsNelsonSiegel = ql.FittedBondDiscountCurve(
    bondSettlementDate, instruments, dc,
    nsf,
    tolerance, max)

tsExponentialSplines = ql.FittedBondDiscountCurve(
    bondSettlementDate, instruments, dc,
    esf,
    tolerance, max)

tsSimplePolynomial = ql.FittedBondDiscountCurve(
    bondSettlementDate, instruments, dc,
    spf,
    tolerance, max)

tsCubicBSplines = ql.FittedBondDiscountCurve(
    bondSettlementDate, instruments, dc,
    cbsf,
    tolerance, max)

估算期限结构

sv = []
ns = []
es = []
sp = []
cbs = []
matList = []

matDate = bondSettlementDate

while matDate <= bondSettlementDate + ql.Period(31, ql.Years):
    matDate = matDate + ql.Period(1, ql.Days)
    matList.append(
        dc.yearFraction(bondSettlementDate, matDate))

    sv.append(
        tsSvensson.zeroRate(matDate, dc, ql.Continuous, frequency).rate() * 100)
    ns.append(
        tsNelsonSiegel.zeroRate(matDate, dc, ql.Continuous, frequency).rate() * 100)
    es.append(
        tsExponentialSplines.zeroRate(matDate, dc, ql.Continuous, frequency).rate() * 100)
    sp.append(
        tsSimplePolynomial.zeroRate(matDate, dc, ql.Continuous, frequency).rate() * 100)
    cbs.append(
        tsCubicBSplines.zeroRate(matDate, dc, ql.Continuous, frequency).rate() * 100)

汇总结果

# 以 termstrc 的估算结果作为比较基准
beta0 = 5.017052
beta1 = -1.117214
beta2 = -3.173622
tau = 2.443936
termstrc = [
    beta0 + \
    beta1 * (1 - np.exp(-m / tau)) / (m / tau) + \
    beta2 * ((1 - np.exp(-m / tau)) / (m / tau) - np.exp(-m / tau)) for m in matList]

df = pd.DataFrame(
    dict(
        maturity=matList * 6,
        rate=sv + ns + es + sp + cbs + termstrc,
        type=np.repeat(
            ['Svensson', 'NelsonSiegel', 'ExponentialSplines',
             'SimplePolynomial', 'CubicBSplines', 'termstrc'], len(matList))))

print(tsSvensson.fitResults().solution())
print(tsNelsonSiegel.fitResults().solution())
print(tsExponentialSplines.fitResults().solution())
print(tsSimplePolynomial.fitResults().solution())
print(tsCubicBSplines.fitResults().solution())

print(tsSvensson.fitResults().minimumCostValue())
print(tsNelsonSiegel.fitResults().minimumCostValue())
print(tsExponentialSplines.fitResults().minimumCostValue())
print(tsSimplePolynomial.fitResults().minimumCostValue())
print(tsCubicBSplines.fitResults().minimumCostValue())

sb.relplot(
    x='maturity', y='rate', kind='line', hue='type',
    size='type', sizes=[2, 2, 2, 2, 2, 4],
    data=df, height=5, aspect=1.6)
[ -134.509; 134.548; 136.375; -0.0234826; 0.000905134; 0.422332 ]
[ -9.7222; 9.75752; 38.0528; 3.14624e-05 ]
[ -31238.6; -95904.4; 46747.5; 53652; 21350.9; 2438.62; -77566.2; 36236.2; 0.000302241 ]
[ -0.0373576; 0.00165862; -0.000203106; 9.83472e-06; -1.47693e-07 ]
[ 1.13572; 0.977843; 0.948002; 0.90216; 0.798218; 0.616569; 0.355499; 0.293158 ]

0.00032255014803192505
0.0020683101877706977
0.0019235041138322383
0.0008108667989534623
0.00037198366450668654

图 1:QuantLib 的结果

图 2:termstrc 的结果

注意:尽管以 termstrc 的结果作为基准,并不意味着基准就是正确答案。

NelsonSiegelSimplePolynomialExponentialSplines 的结果与基准相去甚远。SvenssonCubicBSplines 的结果在短端与基准非常接近,但在长端依然有明显差距,SvenssonCubicBSplines 的结果要略低于基准。

考虑到基准似乎在长端高估了真实利率水平,SvenssonCubicBSplines 的结果可能要好于基准。另外,CubicBSplines 甚至顾及到了 0 附近的两个“异常值”。

当前实现存在的问题与对策

粗看结果似乎还可以接受,但实际上经不起推敲。

  • 首先,根据 Nelson Siegel 模型和 Svensson 模型的经济意义(参考文献 1),估计结果绝对值的数量级应该和利率处于同一水平,通常是 10 以内的某个数。尤其是模型中的 \(\beta_0\),大致应该等于利率的平均值。
  • 其次,三次 B-样条的结果在远端出现了 S 形的扭曲,可能是 knot 选择不当的结果,最终结果对 knot 的选择其实非常敏感(参考文献 3)。另外,QuantLib 采用了 \(d(t) = \sum_{i=0}^{n} c_i \times N_{i,3}(t)\) 的格式(\(N_{i,3}(t)\) 是基本样条函数,\(d(t)\) 是贴现因子),因为 \(N_{i,3}(t)\) 在最外测的两个 knot 上取值非常小(MATLAB 的演示),这使得使用者必须提供而外的 knot 完全覆盖当前的期限范围才能有合理的估计,相当反人类的设计。
  • 第三,指数样条等方法的参数过于极端。

所有问题的根源是相同的,因为估算期限结构本质上是一个优化问题。以 Nelson Siegel 模型和 Svensson 模型为例,参数估计本身是一个相当有挑战性的非凸优化问题(参考文献 2),可能需要借助一些特殊的技术手段(参考文献 2),而不是依赖于某个优化算法。但是 quantlib-python 在封装期限结构接口的时候只保留了样本券权重一个自由度,优化算法、正则化条件等选项均被忽略,特别是优化算法,统一使用比较原始的单纯形算法

若要改良当前的结果,一种方法是编写 C++ 程序使用其他优化算法,并配置接受正则化条件;另一种方法是自定义 swig 的接口文件,修改 quantlib-python 期限结构类的接口,使其能使用其他优化算法,并接受正则化条件。

参考文献

  1. 《收益率曲线的建模和预测——基于 DNS 方法创新》,东北财经大学出版社
  2. R. Ferstl and J. Hayden, "Zero-Coupon Yield Curve Estimation with the Package termstrc" Journal of Statistical Software, August 2010, Volume 36, Issue 1.
  3. James, J. and N. Webber, "Interest Rate Modelling" John Wiley, 2000.

附录

样本券数据。

ISIN MATURITYDATE ISSUEDATE COUPONRATE PRICE ACCRUED
DE0001141414 2008-02-15 2002-08-14 0.0425 100.002 4.087
DE0001137131 2008-03-14 2006-03-08 0.03 99.92 2.6557
DE0001141422 2008-04-11 2003-04-11 0.03 99.805 2.4262
DE0001137149 2008-06-13 2006-05-30 0.0325 99.75 2.069
DE0001135077 2008-07-04 1998-07-04 0.0475 100.305 2.7514
DE0001137156 2008-09-12 2006-08-30 0.035 99.76 1.3579
DE0001141430 2008-10-10 2003-09-25 0.035 99.75 1.0902
DE0001137164 2008-12-12 2006-11-30 0.0375 99.975 0.5225
DE0001135101 2009-01-04 1999-01-04 0.0375 100.0416 0.2869
DE0001137172 2009-03-13 2007-02-28 0.0375 100.0574 3.3299
DE0001141448 2009-04-17 2004-02-02 0.0325 99.5049 2.5751
DE0001137180 2009-06-12 2007-05-30 0.045 101.0971 2.877
DE0001135127 2009-07-04 1999-07-04 0.045 101.137 2.6066
DE0001137198 2009-09-11 2007-08-24 0.04 100.7199 1.5628
DE0001141455 2009-10-09 2004-08-25 0.035 99.8883 1.0997
DE0001137206 2009-12-11 2007-09-21 0.04 100.908 0.5683
DE0001135135 2010-01-04 1999-10-22 0.05375 103.3553 0.4112
DE0001141463 2010-04-09 2005-02-24 0.0325 99.5034 2.6462
DE0001135150 2010-07-04 2000-05-05 0.0525 103.913 3.041
DE0001141471 2010-10-08 2005-08-26 0.025 97.4229 0.7923
DE0001135168 2011-01-04 2000-09-29 0.0525 104.5636 0.4016
DE0001141489 2011-04-08 2006-02-26 0.035 99.7527 2.8593
DE0001135184 2011-07-04 2001-05-23 0.05 104.3708 2.8962
DE0001141497 2011-10-14 2006-08-30 0.035 99.6051 1.0519
DE0001135192 2012-01-04 2001-12-28 0.05 104.8603 0.3825
DE0001141505 2012-04-13 2007-02-28 0.04 101.3415 3.3661
DE0001135200 2012-07-04 2002-06-26 0.05 105.29 2.8962
DE0001141513 2012-10-12 2007-08-24 0.0425 102.4969 1.4631
DE0001135218 2013-01-04 2002-12-31 0.045 103.7602 0.3443
DE0001135234 2013-07-04 2003-06-24 0.0375 100.2803 2.1721
DE0001135242 2014-01-04 2003-10-21 0.0425 102.6046 0.3251
DE0001135259 2014-07-04 2004-04-25 0.0425 102.5291 2.4617
DE0001135267 2015-01-04 2004-10-27 0.0375 99.4748 0.2869
DE0001135283 2015-07-04 2005-04-28 0.0325 95.9702 1.8825
DE0001135291 2016-01-04 2005-10-30 0.035 97.1815 0.2678
DE0001134468 2016-06-20 1986-06-20 0.06 114.2849 3.7049
DE0001135309 2016-07-04 2006-04-26 0.04 100.2847 2.3169
DE0001134492 2016-09-20 1986-09-20 0.05625 112.23 2.0594
DE0001135317 2017-01-04 2006-10-31 0.0375 98.397 0.2869
DE0001135333 2017-07-04 2007-04-27 0.0425 102.0235 2.9262
DE0001135341 2018-01-04 2007-09-21 0.04 99.8483 0.8415
DE0001134922 2024-01-04 1993-12-29 0.0625 121.2711 0.4781
DE0001135044 2027-07-04 1997-07-03 0.065 125.9157 3.765
DE0001135069 2028-01-04 1998-01-04 0.05625 114.5791 0.4303
DE0001135085 2028-07-04 1998-10-07 0.0475 103.2202 2.7514
DE0001135143 2030-01-04 2000-01-04 0.0625 123.4668 0.4781
DE0001135176 2031-01-04 2000-10-27 0.055 113.4694 0.4208
DE0001135226 2034-07-04 2003-01-22 0.0475 103.1873 2.7514
DE0001135275 2037-01-04 2004-12-24 0.04 91.5603 0.306
DE0001135325 2039-07-04 2006-12-28 0.0425 95.4441 4.3081

$flag 上一页 下一页