jvm各种回收器,各自优缺点,重点CMS、G1

时间:2019-02-19
本文章向大家介绍jvm各种回收器,各自优缺点,重点CMS、G1,主要包括jvm各种回收器,各自优缺点,重点CMS、G1使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

串行、并行与并发

下面2个名词都是并发编程中的概念,在谈论垃圾收集器的上下文语境中,它们可以解释如下:

  • 串行:单个线程执行垃圾回收,并且此时用户线程仍然处于等待状态。
  • 并行:指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
  • 并发:指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。

新生代回收器:SerialGC ParNewGc ParallelScavengeGC

名称  串行/并行/并发 回收算法 适用场景 可以与cms配合
SerialGC 串行 复制 单cpu
ParNewGC 并行 复制 多cpu
ParallelScavengeGC 并行 复制 多cpu且关注吞吐量


Serial(串行GC)收集器
        Serial收集器是一个新生代收集器,单线程执行,使用复制算法。它在进行垃圾收集时,必须暂停其他所有的工作线程(用户线程)。是Jvm client模式下默认的新生代收集器。对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。在用户的桌面应用场景中,即Client模式下的虚拟机来说是一个很好的选择。
ParNew(并行GC)收集器
        ParNew收集器其实就是serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为与Serial收集器一样。它是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。ParNew在单CPU环境下绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分百保证可以超越Serial收集器。当然,随着可以使用的CPU的数量的增加,它对GC时系统资源的有效利用还是很有好处的。
Parallel Scavenge(并行回收GC)收集器
        Parallel Scavenge收集器也是一个新生代收集器,它也是使用复制算法的收集器,又是并行多线程收集器。parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而parallel Scavenge收集器的目标则是达到一个可控制的吞吐量。吞吐量= 程序运行时间/(程序运行时间 + 垃圾收集时间),虚拟机总共运行了100分钟。其中垃圾收集花掉1分钟,那吞吐量就是99%。由于于吞吐量关系密切,Parallel Scavenge收集器也经常被称为“吞吐量优先”收集器。Parallel Scavenge收集器有一个参数-XX:UseAdaptiveSizePolicy,当这个参数打开,虚拟机会根据当前系统的运行状况收集性能监控信息,动态调整一些如新生代大小、Eden与Survivor区的比例等等细节参数。这种自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别。

三种老生代回收器

名称  串行/并行/并发 回收算法 适用场景
SerialOldGC 串行 标记整理 单cpu
ParNewOldGC 并行 标记整理 多cpu
CMS 并发,几乎不会暂停用户线程 标记清除 多cpu且与用户线程共存

Seral Old(串行GC)收集器

         Serial Old是Serial收集器的老年代版本,它同样使用一个单线程执行收集,使用“标记-整理”算法。主要使用在Client模式下的虚拟机。如果在Server模式下,那么它还有两大用途:一种用途是在JDK1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途是作为CMS收集器的后备预案,在并并发手机发生Concurrent Mode Failure时使用。
Parallel Old(并行GC)收集器
        Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge收集器加Parallel Old收集器。
CMS(并发GC)收集器
        CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,适用于集中在互联网站或者B/S系统的服务端的Java应用。CMS收集器是基于“标记-清除”算法实现的,整个收集过程大致分为4个步骤:
①.初始标记(CMS initial mark)
②.并发标记(CMS concurrenr mark)
③.重新标记(CMS remark)
④.并发清除(CMS concurrent sweep)
     其中初始标记、重新标记这两个步骤任然需要停顿其他用户线程。初始标记仅仅只是标记出GC ROOTS能直接关联到的对象,速度很快,并发标记阶段是进行GC ROOTS 根搜索算法阶段,会判定对象是否存活。而重新标记阶段则是为了修正并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间会被初始标记阶段稍长,但比并发标记阶段要短。
     由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以整体来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。
CMS收集器的优点:并发收集、低停顿,但是CMS还远远达不到完美,主要有三个显著缺点:
  CMS收集器对CPU资源非常敏感。在并发阶段,虽然不会导致用户线程停顿,但是会占用CPU资源而导致引用程序变慢,总吞吐量下降。CMS默认启动的回收线程数是:(CPU数量+3) / 4。
  CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure“,失败后而导致另一次Full  GC的产生。由于CMS并发清理阶段用户线程还在运行,伴随程序的运行自热会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在本次收集中处理它们,只好留待下一次GC时将其清理掉。这一部分垃圾称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,
即需要预留足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分内存空间提供并发收集时的程序运作使用。在默认设置下,CMS收集器在老年代使用了68%的空间时就会被激活,也可以通过参数-XX:CMSInitiatingOccupancyFraction的值来提供触发百分比,以降低内存回收次数提高性能。要是CMS运行期间预留的内存无法满足程序其他线程需要,就会出现“Concurrent Mode Failure”失败,这时候虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。所以说参数-XX:CMSInitiatingOccupancyFraction设置的过高将会很容易导致“Concurrent Mode Failure”失败,性能反而降低。
  最后一个缺点,CMS是基于“标记-清除”算法实现的收集器,使用“标记-清除”算法收集后,会产生大量碎片。空间碎片太多时,将会给对象分配带来很多麻烦,比如说大对象,内存空间找不到连续的空间来分配不得不提前触发一次Full  GC。为了解决这个问题,CMS收集器提供了一个-XX:UseCMSCompactAtFullCollection开关参数,用于在Full  GC之后增加一个碎片整理过程,还可通过-XX:CMSFullGCBeforeCompaction参数设置执行多少次不压缩的Full  GC之后,跟着来一次碎片整理过程。


G1收集器

        G1(Garbage First)收集器是JDK1.7提供的一个新收集器,是当今收集器技术发展的最前沿成果之一。G1是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是(在比较长期的)未来可以替换掉JDK1.5中发布的CMS收集器。
与其他GC收集器相比,G1具备如下特点:
1、并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU(CPU或CPU核心)来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
2、分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能单独管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象已获得更好的收集效果。
3、空间整合:与CMS的“标记-清理”算法不同,G1收集器从整体上看是基于“标记-整理”算法实现的,从局部(两个Region之间)上看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运行期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序的长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。
4、可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。

两代回收器之间的配合关系

如下图:注意新生代的parNew和老年代的ParallelOld不可搭配使用。